Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
Đề 1: TỰ LUẬN
Câu 1: sin 60o31' = cos 29o29'
cos 75o12' = sin 14o48'
cot 80o = tan 10o
tan 57o30' = cot 32o30'
sin 69o21' = cos 20o39'
cot 72o25' = 17o35'
- Chiều về mình làm cho nha nha Giờ mình đi học rồi Bạn có gấp lắm hông
a, không nhìn rõ
b, \(\dfrac{a+2\sqrt{a}+1}{a-1}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)
\(BH=\frac{AB^2}{BC}=\frac{3^2}{6}=1,5\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=\sqrt{6^2-3^2}=3\sqrt{3}cm\).
\(AH=\frac{AB.AC}{BC}=\frac{3\sqrt{3}}{2}\left(cm\right)\)
Gọi \(D,E\)lần lượt là giao điểm của đường tròn \(\left(H\right)\)với \(AB,BC\).
\(\widehat{HDB}=\widehat{HBD}=arccos\frac{3}{6}=60^o\Rightarrow\Delta HBD\)đều.
Diện tích quạt \(HBD\)là: \(\frac{60}{360}.\pi.BH^2=\frac{1}{6}.3,14.1,5^2=1,1775\left(cm^2\right)\)
DIện tích tam giác \(HBD\)là: \(\frac{1,5^2\sqrt{3}}{4}=\frac{9\sqrt{3}}{16}\left(cm^2\right)\)
Diện tích phần không màu nằm ngoài hình tam giác là: \(1,1775-\frac{9\sqrt{3}}{16}\left(cm^2\right)\)
Diện tích phần không màu nằm trong hình tam giác là:
\(\frac{1}{2}.\pi.1,5^2-\left(1,1775-\frac{9\sqrt{3}}{16}\right)cm^2\).
Diện tích tam giác là: \(\frac{1}{2}.3.3\sqrt{3}=\frac{9\sqrt{3}}{2}\left(cm^2\right)\)
Diện tích phần tô đậm là: \(\frac{9\sqrt{3}}{2}-\left[\frac{1}{2}.\pi.1,5^2-\left(1,1775-\frac{9\sqrt{3}}{16}\right)\right]\approx4,5\left(cm^2\right)\)