Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/22 + 5/32 + 5/42 +...+ 5/1002 < 5/1.2 + 5/2.3 +5/3.4 +...+ 5/99.100
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. ( 1/1.2 + 1/2.3 +1/3.4 +..+ 1/99.100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. (1/1 -1/2 +1/2 -1/3 +1/3-1/4 +...+ 1/99-1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. (1/1-1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. ( 100/100 -1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. 99/100
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 99/20
mình chỉ giải tới đây thôi vì đã dễ rồi
S = 5 + 52 + 53 + ... + 52012
5S = 52 + 53 + 54 + ... + 52013
5S - S = [52 + 53 + 54 + ... + 52013]- [5 + 52 + 53 + ... + 52012]
4S = 52013 - 5
\(S=\frac{5^{2013}-5}{4}\)
5S= 5^2+5^3+5^4+... +5^2013
=>4S=(5^2+5^3+5^4+... +5^2013) -(5+5^2+... +5^2012)
=>4S=5^2013-5
=>S=(5^2013-5) :4
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\Rightarrow S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow S< 5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow S< 5\left(1-\frac{1}{100}\right)< 5.1=5\)
Vậy S < 5 (đpcm)
\(S=\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\)
\(\Rightarrow S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(\Rightarrow S>5\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(\Rightarrow S>5\left(\frac{101}{202}-\frac{2}{202}\right)\)
\(\Rightarrow S>5.\frac{99}{202}=\frac{495}{202}>2\)
Vậy S > 2 ( đpcm)