Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=1+2+2^2+..+2^{2022}\)
\(2S=2+2^2+2^3+...+2^{2023}\)
\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)
\(S=2^{2023}-1\)
b) \(S=3+3^2+3^3+...+3^{2022}\)
\(3S=3^2+3^3+...+3^{2023}\)
\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)
\(2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
c) \(S=4+4^2+4^3+...+4^{2022}\)
\(4S=4^2+4^3+...+4^{2023}\)
\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)
\(3S=4^{2023}-4\)
\(S=\dfrac{4^{2023}-4}{3}\)
d) \(S=5+5^2+...+5^{2022}\)
\(5S=5^2+5^3+...+5^{2023}\)
\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)
\(4S=5^{2023}-5\)
\(S=\dfrac{5^{2023}-5}{4}\)
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
\(S=\dfrac{1}{5^2}+\dfrac{1}{7^2}+\dfrac{1}{9^2}+...+\dfrac{1}{103^2}\)
\(\Rightarrow2S=\dfrac{2}{5^2}+\dfrac{2}{7^2}+\dfrac{2}{9^2}+...+\dfrac{2}{103^2}\)
Có:
\(\dfrac{2}{5^2}=\dfrac{2}{5.5}< \dfrac{2}{4.6}=\dfrac{1}{4}-\dfrac{1}{6}\)
\(\dfrac{2}{7^2}=\dfrac{2}{7.7}< \dfrac{2}{6.8}=\dfrac{1}{6}-\dfrac{1}{8}\)
\(\dfrac{2}{9^2}=\dfrac{2}{9.9}< \dfrac{2}{8.10}=\dfrac{1}{8}-\dfrac{1}{10}\)
...
\(\dfrac{2}{103^2}=\dfrac{2}{103.103}< \dfrac{1}{102.104}=\dfrac{1}{102}-\dfrac{1}{104}\)
\(\Rightarrow2S< \dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{102}-\dfrac{1}{104}\)
\(\Rightarrow2S< \dfrac{25}{104}\)
\(\Rightarrow S< \dfrac{25}{208}< \dfrac{5}{32}\)
\(\Rightarrow S< \dfrac{5}{32}\).
Ta có:
\(\dfrac{1}{5^2}< \dfrac{1}{4.6}\)
\(\dfrac{1}{7^2}< \dfrac{1}{6.8}\)
\(\dfrac{1}{9^2}< \dfrac{1}{8.10}\)
\(...\)
\(\dfrac{1}{103^2}< \dfrac{1}{102.104}\)
\(\Rightarrow S\)\(< \dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{102.104}\)\(\left(1\right)\)
Đặt \(A=\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}+...+\dfrac{1}{102.104}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+...+\dfrac{2}{102.104}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+...+\dfrac{1}{102}-\dfrac{1}{104}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{4}-\dfrac{1}{104}\right)\)
\(=\dfrac{1}{2}.\dfrac{25}{104}\)
\(=\dfrac{25}{208}< \dfrac{25}{160}\)\(\left(2\right)\)
Mà \(\dfrac{25}{160}=\dfrac{5}{32}\)\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\) và \(\left(3\right)\)
\(\Rightarrow S< \dfrac{5}{32}\)
\(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)
Xét \(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\). Chứng minh 3/5 < A < 8/5
+ Có: \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\frac{3}{5}\Rightarrow S>3\) (2)
Từ (1)(2) => 3 < S < 8
Này Trần Thị Loan à, tớ thấy cậu nên
thay chữ "xét" ở chỗ "xét A" thành chữ"đặt"
nghe hợp lý hơn.
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
5/22 + 5/32 + 5/42 +...+ 5/1002 < 5/1.2 + 5/2.3 +5/3.4 +...+ 5/99.100
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. ( 1/1.2 + 1/2.3 +1/3.4 +..+ 1/99.100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. (1/1 -1/2 +1/2 -1/3 +1/3-1/4 +...+ 1/99-1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. (1/1-1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. ( 100/100 -1/100)
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 5. 99/100
5/2.2 +5/3.3 + 5/4.4 +...+ 5/100.100 < 99/20
mình chỉ giải tới đây thôi vì đã dễ rồi