K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

de 21/a la so tu nhien 

=> 21 chia het cho a hay a thuoc uoc cua 21

vi a la so tu nhien => Ư(21) = { 1,3,7,21 }

vay a thuoc { 1 ,3,7,21 }

may cau con lai tuong tu nhe vì minh khong co thoi gian . 

                   ^_^

18 tháng 2 2017

Bài 1:

ĐKXĐ:\(n\ne-2\)

Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)

Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)

                          => \(n+2=\left\{-3;-1;1;3\right\}\)

                           => \(n=\left\{-5;-3;-1;1\right\}\)

Mà \(n\in N\)=> n=1

Bài 2:

ĐKXĐ \(a\ne1;-1\)

Để \(\frac{21}{a}\in N\)

Thì \(a\inƯ\left(21\right)\)

=>a={1;3;7;21} (1)

Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)

=>a-1={1;2;11;22}

=>a={1;3;12;23}   (2)

Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)

=> a+1={1;2;4;6;12;24}

=>a={0;1;3;5;11;23}   (3)

Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên

18 tháng 2 2017

ko bit

15 tháng 8 2023

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

15 tháng 8 2023

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

15 tháng 8 2023

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)