Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này dễ mà bn.
Cách giải
\(x^2-5x+m=0\left(1\right)\)
+)Theo bài ta có x=3(2)
+)Thay (2) vào (1) được:
\(3^2-5.3+m=0\)
\(\Rightarrow9-15+m=0\)
\(\Rightarrow-6+m=0\)
\(\Rightarrow m=6\)
Vậy m=6
Chúc bn học tốt
\(\text{a) Thay a = 4 vào pt ta có:}\)
\(\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x-4\right)\left(x+4\right)+\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=2\)
\(\Leftrightarrow\frac{x^2-16+x^2-4}{x^2-4x+2x-8}=2\)
\(\Leftrightarrow\frac{2x^2-20}{x^2-2x-8}=2\)
\(\Leftrightarrow2x^2-20=2.\left(x^2-2x-8\right)\)
\(\Leftrightarrow2x^2-20=2x^2-4x-16\)
\(\Leftrightarrow2x^2-2x^2+4x=-16+20\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)
\(\text{b) Thay x = -1 vào pt ta có:}\)
\(\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{a-1}{1}+\frac{-3}{-\left(a+1\right)}=2\)
\(\Leftrightarrow\left(a-1\right)+\frac{3}{a+1}=2\)
\(\Leftrightarrow\frac{\left(a-1\right)\left(a+1\right)+3}{a+1}=2\)
\(\Leftrightarrow\frac{a^2-1+3}{a+1}=2\)
\(\Leftrightarrow a^2+2=2.\left(a+1\right)\)
\(\Leftrightarrow a^2+2=2a+2\)
\(\Leftrightarrow a^2-2a=2-2\)
\(\Leftrightarrow a\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy để pt có nghiệm là x = 1 thì a = {0 ; 2}
\(a.Thay:a=4\Leftrightarrow\frac{x+4}{x+2}+\frac{x-2}{x-4}=2\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}=\frac{2\left(x+2\right)\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}\)
\(\Rightarrow\left(x+4\right)\left(x-4\right)+\left(x-2\right)\left(x+2\right)=2\left(x+2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-4x+4x-16+x^2+2x-2x-4=\left(2x+4\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-20=2x^2-8x+4x-16\)
\(\Leftrightarrow2x^2-20-2x^2+8x-4x+16=0\)
\(\Leftrightarrow4x-4=0\)
\(\Leftrightarrow x=1\)
a, ta có (x-1)(2x-1)=0
<=> x-1=0 <=> x=1
2x-1=0 x=1/2
để mx2-(m+1)x+1=0 tương đương với (x-1)(2x-1)=0
<=> m-m-1+1=0 có cùng tập nghiệm với (x-1)(2x-1)=0
với x=1 thì m-(m+1)+1=0
<=>m-m-1+1=0
<=> 0 m = 0 ( lđ )
Với x=1/2 thì 1/4m - (m+1)1/2+1=0
<=> 1/4m - (m+1)1/2+1=0
<=> 1/4m - 2(m+1)/4 +4/4 =0
<=>m-2m-2+4=0
<=> -m +2=0
<=> -m=-2
<=>m=2
b; Ta có: (x-3)(ax+2)=0 và (2x+b)(x+1)=0.
=> (x-3)(ax+2)=(2x+b)(x+1).
<=> ax2+(2-3a)x-6=2x2+(2+b)x+b.
<=>a=2 và 2-3a=2+b và b=-6 (Hai phương trình bậc 2 bằng nhau thì các hệ số tương ứng sẽ bằng nhau).
Vậy a=2; b=-6 thỏa mãn phương trình trên.
ĐKXĐ : \(\hept{\begin{cases}x\ne-4\\x\ne-m\end{cases}}\)
a) Để pt có nghiệm x = 4 thì \(\frac{4-m}{8}=2\)=> 4 - m = 16 <=> m = -12 ( tm )
Vậy với m = -12 thì pt có nghiệm x = 4
b) (1) <=> \(\frac{x^2-m^2}{\left(x+4\right)\left(x+m\right)}+\frac{x^2-16}{\left(x+4\right)\left(x+m\right)}=\frac{2\left(x+4\right)\left(x+m\right)}{\left(x+4\right)\left(x+m\right)}\)
=> 2x2 - m2 - 16 = 2x2 + ( 2m + 8 )x + 8m
<=> \(x=\frac{\left(m+4\right)^2}{2\left(m+4\right)}=\frac{m+4}{2}\)
Vậy pt luôn có nghiệm duy nhất ∀ x ≠ -4 và x ≠ -m