Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4^3\times27-4^3\times23\)
\(=4^3\times\left(27-23\right)\)
\(=64\times4\)
\(=256\)
\(3^4\times71+3^4\times2^9\)
\(=3^4\times\left(71+2^9\right)\)
\(=81\times\left(71+512\right)\)
\(=81\times583\)
\(=47223\)
\(\left(3^3\times5^2-2^4-16\right)\times13\)
\(=\left(27\times25-16-16\right)\times13\)
\(=\left(675-16-16\right)\times13\)
\(=\left(659-16\right)\times13\)
\(=643\times13\)
\(=8359\)
\(35\times273+33\times35\)
\(=35\times\left(273+33\right)\)
\(=35\times306\)
\(=10710\)
\(2^3\times4^2+2^3\times84-40\)
\(=8\times16+8\times84-40\)
\(=8\times\left(16+84\right)-40\)
\(=8\times100-40\)
\(=800-40\)
\(=760\)
a)(2x-5)^2006>/0( mọi x)
(y^2-1)^2008>/0(mọi x)
(x-z)^2010>/0(mọi x)
Để (2x-5)^2006+(y^2-1)^2008+(x-z)^2010=0
=>2x-5=y^2-1=x-z=0
=>x=2,5;y=1;z=2,5
Ta có: \(\frac{4x}{-5}=\frac{6y}{7}=\frac{-3z}{8}\)(1) và x + 3y - 2z = -273
(1) => \(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-z}{\frac{8}{3}}\)=> \(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-2z}{\frac{16}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-2z}{\frac{16}{3}}=\frac{x+3y-2z}{\frac{-5}{4}+\frac{7}{2}-\frac{16}{3}}=\frac{-273}{\frac{-37}{12}}=\frac{3276}{37}\)
=> \(\frac{x}{\frac{-5}{4}}=\frac{3276}{37}\)=> \(37x=3276\left(\frac{-5}{4}\right)\)=> x = \(\frac{-4095}{37}\)
và \(\frac{3y}{\frac{7}{2}}=\frac{3276}{37}\)=> \(111y=3276.\frac{7}{2}\)=> y = \(\frac{3822}{37}\)
và \(\frac{-2z}{\frac{16}{3}}=\frac{3276}{37}\)=> \(-74z=3276.\frac{16}{3}\)=> z = \(\frac{-8736}{37}\)
=> A = x + y + z + 1 = \(\frac{-4095}{37}\)+ \(\frac{3822}{37}\)+ \(\frac{-8736}{37}\)+ 1 = \(\frac{-8972}{37}\).
\(\frac{131}{273}< 1\) 179 > 1
Vậy \(\frac{131}{273}< 179\)
Đúng 100 %
\(f(x)=ax^2+bx+6\)
Để \(f(x)\) là đa thức bậc \(1\) thì \(ax^2=0\)
\(→a=0\)
Thay \(x=1\) vào \(f(x)=ax^2+bx+6\)
\(f(1)=b.1+6=b+6\)
Mà \(f(1)=3\)
\(\Rightarrow b+6=3\Rightarrow b=3−6\Rightarrow b=−3\)
Vậy \(a=0;b=−3\)
a: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
\(\widehat{ABH}=\widehat{DBH}\)
Do đó: ΔBAH=ΔBDH
`@` `\text {Ans}`
`\downarrow`
\(3^{2x+1}=27^3\)
`=>`\(3^{2x+1}=\left(3^3\right)^3\)
`=>`\(3^{2x+1}=3^9\)
`=> 2x+1=9`
`=> 2x = 9-1`
`=> 2x=8`
`=> x=8 \div 2`
`=> x=4`
Vậy, `x=4.`
`@` `\text {Kaizuu lv uuu}`
CT áp dụng:
`@` Phép nâng lên lũy thừa: `(a^m)^n = a^(m*n)`