
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2: Để hệ có nghiệm duy nhất thì \(\frac{1}{a}<>\frac{a}{1}\)
=>\(a^2<>1\)
=>a∉{1;-1](1)
\(\begin{cases}ax+y=3a\\ x+ay=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x+a\left(3a-ax\right)=2a+1\end{cases}\)
=>\(\begin{cases}y=3a-a\cdot x\\ x+3a^2-a^2\cdot x=2a+1\end{cases}\Rightarrow\begin{cases}y=3a-ax\\ x\left(1-a^2\right)=2a+1-3a^2\end{cases}\)
=>\(\begin{cases}x=\frac{-3a^2+2a+1}{1-a^2}=\frac{3a^2-2a-1}{a^2-1}=\frac{\left(a-1\right)\left(3a+1\right)}{\left(a-1\right)\left(a+1\right)}=\frac{3a+1}{a+1}\\ y=3a-a\cdot\frac{3a+1}{a+1}=\frac{3a^2+3a-3a^2-a}{a+1}=\frac{2a}{a+1}\end{cases}\)
Để x,y nguyên thì \(\begin{cases}3a+1\vdots a+1\\ 2a\vdots a+1\end{cases}\Rightarrow\begin{cases}3a+3-2\vdots a+1\\ 2a+2-2\vdots a+1\end{cases}\)
=>-2⋮a+1
=>a+1∈{1;-1;2;-2}
=>a∈{0;-2;1;-3}
Kết hợp (1), ta có: a∈{0;-2;-3}
Bài 3:
ĐKXĐ: x>=y
\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{8}}-\sqrt{\frac{x-y}{12}}=3\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \frac12\left(\sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}\right)=3\end{cases}\)
=>\(\begin{cases}\sqrt{\frac{x+y}{2}}+\sqrt{\frac{x-y}{3}}=14\\ \sqrt{\frac{x+y}{2}}-\sqrt{\frac{x-y}{3}}=6\end{cases}\Rightarrow\begin{cases}\sqrt{\frac{x+y}{2}}=10\\ \sqrt{\frac{x-y}{3}}=4\end{cases}\)
=>\(\begin{cases}\frac{x+y}{2}=100\\ \frac{x-y}{3}=16\end{cases}\Rightarrow\begin{cases}x+y=200\\ x-y=48\end{cases}\Rightarrow\begin{cases}x=\frac{200+48}{2}=\frac{248}{2}=124\\ y=200-124=76\end{cases}\) (nhận)

Câu 5:
AB=1,6+25=26,6(m)
Ta có: \(\hat{xAC}=\hat{ACB}\) (hai góc so le trong, Ax//BC)
mà \(\hat{xAC}=38^0\)
nên \(\hat{ACB}=38^0\)
Xét ΔABC vuông tại B có tan ACB\(=\frac{AB}{BC}\)
=>\(BC=\frac{AB}{\tan ACB}=\frac{26.6}{\tan38}\) ≃34,0(m)
=>Chiếc xe cách chân tòa nhà khoảng 34m

Câu 7:
Xét tứ giác AHBD có \(\hat{AHB}=\hat{ADB}=\hat{DBH}=90^0\)
nênAHBD là hình chữ nhật
=>HB=AD=68(m)
Xét ΔAHD vuông tại H có \(\tan HAB=\frac{HB}{AH}\)
=>\(AH=\frac{HB}{\tan HAB}=\frac{68}{\tan28}\) ≃127,89(m)
Xét ΔAHC vuông tại H có \(\tan HAC=\frac{HC}{HA}\)
=>\(HC=HA\cdot\tan HAC=127,89\cdot\tan43\) ≃119,26(m)
BC=BH+CH=68+119,26≃187,3(m)

a: ta có: AH⊥CD
OM⊥CD
BK⊥CD
Do đó: AH//OM//BK
Xét ΔAKB có
O là trung điểm của AB
ON//KB
DO đó: N là trung điểm của AK
=>AN=NK
b: Xét hình thang ABKH có
O là trung điểm của AB
OM//AH//BK
Do đó: M là trung điểm của HK
=>MH=MK
c: ΔOCD cân tại O
mà OM là đường cao
nên M là trung điểm của CD
Ta có: MC+CH=MH
MD+DK=MK
mà MC=MD và MH=MK
nên CH=DK

ABCD là hình vuông
mà O là giao điểm của hai đường chéo
nên AC⊥BD tại O; O là trung điểm chung của AC và BD; AC=BD
=>\(OA=OB=OC=OD=\frac{AC}{2}\)
=>\(AC=2\cdot AO=2\cdot2\sqrt2=4\sqrt2\) >4
=>C nằm ngoài (A;4cm)
Ta có: OA=OB=OD
mà \(OA=2\sqrt2\)
nên \(OB=OD=2\sqrt2\)
ΔOAB vuông tại O
=>\(OA^2+OB^2=AB^2\)
=>\(AB^2=\left(2\sqrt2\right)^2+\left(2\sqrt2\right)^2=8+8=16=4^2\)
=>AB=4(cm)
=>B nằm trên (A;4cm)
Ta có: ABCD là hình vuông
=>AB=AD=4cm
=>D nằm trên (A;4cm)
giúp mình từ câu 9 với