Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
d: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
e: Ta có: \(x^3-y^3-3x+3y\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2-3\right)\)
2.
\(a,x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(b,x^2-3y^2=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)
\(c,\left(3x-2y\right)^2-\left(2x-3y\right)^2\\ =\left(3x-2y-2x+3y\right)\left(3x-2y+2x-3y\right)\\ =\left(x+y\right)\left(5x-5y\right)=5\left(x-y\right)\left(x+y\right)\)
\(d,9\left(x-y\right)^2-4\left(x+y\right)^2\\ =\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\)
\(e,\left(4x^2-4x+1\right)-\left(x+1\right)^2\\ =\left(2x-1\right)^2-\left(x+1\right)^2\\ =\left(2x-1-x-1\right)\left(2x-1+x+1\right)\\ =3x\left(x-2\right)\)
\(f,x^3+27=\left(x+3\right)\left(x^2+3x+9\right)\)
\(g,27x^3-0,001=\left(3x-0,1\right)\left(9x^2+0,027x+0,01\right)\)
\(h,125x^3-1=\left(5x-1\right)\left(25x^2+5x+1\right)\)
Bài 3 :
a) \(x^4+2x^2+1=\left(x^2+1\right)^2\)
b) \(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
c) \(-x^2-2xy-y^2=-\left(x+y\right)^2\)
e) \(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
f) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
g) \(x^3+6x^2+12x+8=\left(x+2\right)^3\)
h) \(x^3+1-x^2-x=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)=\left(x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)\left(x-1\right)^2\)
l) \(\left(x+y\right)^2-x^3-y^3=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)=3xy\left(x+y\right)\)
Lần sau bn nhớ bổ sung thêm đề nhé! Lần này mình sẽ xem như đề là tìm GTLN
\(12x-4x^2+9=-\left(4x^2-12x+9\right)+18=-\left(2x-3\right)^2+18\le18\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{2}\)
Xin lỗi bạn nha đề của mình là phân tích đa thức thành nhân tử. Sorry bạn!
3.(⅓x - ¼)² = ⅓
=> (\(\dfrac{1}{3x}\)- \(\dfrac{1}{4}\) )2 = \(\dfrac{1}{9}\)
=>\(\left[{}\begin{matrix}\dfrac{1}{3x}-\dfrac{1}{4}=\dfrac{-1}{3}\\\dfrac{1}{3x}-\dfrac{1}{4}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\dfrac{1}{3x}=\dfrac{-1}{12}\\\dfrac{1}{3x}=\dfrac{7}{12}\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=-4\\x=\dfrac{12}{21}=\dfrac{4}{7}\end{matrix}\right.\)
Vậy, tập nghiệm x thỏa mãn là S=\(\left\{-4;\dfrac{4}{7}\right\}\)
\(a,=\dfrac{x^2-4}{x+2}=\dfrac{\left(x-2\right)\left(x+2\right)}{x+2}=x-2\\ b,=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\)
\(A=\left(\frac{x}{x+2}+\frac{x^3}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{x^2-2x+4}{4-x^2}\right):\frac{4}{x+2}\)
\(A=\left(\frac{x}{x+2}+\frac{x^3}{x+2\left(4-x^2\right)}\right):\frac{4}{x+2}\)
\(A=\left(\frac{4x-x^3+x^3}{x+2\left(4-x\right)}\right):\frac{4}{x+2}\)
\(A=\frac{4x}{x+2\left(4-x\right)}.\frac{x+2}{4}\)
\(A=\frac{x}{4-x}\)
\(b,\frac{x}{4-x}>0\)
xét 2 trường hợp x>0 đồng thời 4-x>0 (điều kiện x\(\ne\)4) và x<0 ,4-x<0
\(TH1:0< x< \text{4}\)
\(TH2:\)ko có giá trị x
\(c,Ax=\frac{x}{4-x}x\)=\(\frac{x^2}{4-x}\)
\(\frac{x^2-16+16}{4-x}\)
\(\frac{\left(x-4\right)\left(x+4\right)+16}{4-x}\)
\(-\left(x+4\right)+\frac{16}{4-x}\)
để AX nguyên thì \(16⋮4-x\)
lập bảng ra tìm đc x = 0,2,-4,-12,5,6,8,12,20