Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{\frac{\left(-5\right)^2}{7}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{7}}=\frac{|5|}{\sqrt{7}}=\frac{5\sqrt{7}}{7}\)
\(\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{49}}=\frac{|5|}{|7|}=\frac{5}{7}\)
\(\frac{5\sqrt{7}}{7}>\frac{5}{7}\leftrightarrow\sqrt{\frac{\left(-5\right)^2}{7}}>\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(10\sqrt{0,01}.\sqrt{\frac{16}{9}}+3\sqrt{49}-\frac{1}{6}\sqrt{4}\)
\(=10\sqrt{\frac{10}{100}}.\sqrt{\frac{4^2}{3^2}}+3.\sqrt{7^2}-\frac{1}{6}\sqrt{2^2}\)
\(=10.\frac{\sqrt{10}}{10}.\frac{4}{3}+3.7-\frac{1}{6}.2\)
\(=\frac{4\sqrt{10}}{3}+27-\frac{1}{3}\)
\(=\frac{4}{3}\sqrt{10}+\frac{80}{3}\)
b) \(\left(1+\frac{2}{3}-\frac{1}{4}\right).\left(0,8-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{4}{5}-\frac{3}{4}\right)^2\)
\(=\frac{17}{12}.\left(\frac{1}{20}\right)^2\)
\(=\frac{17}{12}.\frac{1}{400}\)
\(=\frac{17}{4800}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)(đpcm)
b) Ta có : \(\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}>25-\frac{1}{\sqrt{6}}=24-\frac{1}{\sqrt{6}}+1=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)
\(\Rightarrow\sqrt{625}-\frac{1}{\sqrt{5}}>\sqrt{576}-\frac{1}{\sqrt{6}}+1\)(đpcm)