K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2023

A = 2020 - 2019 + 2018 - 2017+...+ 2-1

A = (2020 - 2019) + (2018 - 2017) +...+(2-1)

Xét dãy số: 2; ...; 2018; 2020

Dãy số trên là dãy số cách đều có khoảng cách là: 2020 - 2018 = 2

Số số hạng của dãy số trên là: (2020 - 2): 2 + 1 = 1010 (số)

Tổng A có 1010 nhóm mỗi nhóm có giá trị là: 2 -1 =1

Nên A =  1 \(\times\)1010 = 1010

 

6 tháng 8 2017

Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)

Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)

Từ (1)(2), suy ra :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)

Vậy ......................

~ Học tốt ~

6 tháng 8 2017

Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)

5 tháng 1 2020

ta có

1-2-3+4+5-6-7+8.....+2017-2018-2019+2020

=0+0+.........+0=0

1 tháng 10 2020

Ta có: \(A=3^{2020}+3^{2019}+...+3^2+3\)

\(\Rightarrow3A=3^{2021}+3^{2020}+...+3^3+3^2\)

\(\Rightarrow3A-A=\left(3^{2021}+3^{2020}+...+3^2\right)-\left(3^{2020}+3^{2019}+...+3\right)\)

\(\Leftrightarrow2A=3^{2021}-3\)

\(\Rightarrow A=\frac{3^{2021}-3}{2}\)

Vậy \(A=\frac{3^{2021}-3}{2}\)

11 tháng 9 2020

\(\frac{2017.2019-5}{2017.2018+2012}\)

Xét mẫu số

 \(2017.2018+2012=2017.2018+2017-5=2017\left(2018+1\right)-5=2017.2019-5\)

=> Mẫu số bằng tử số

=> Kết quả: 1

10 tháng 5 2019

bạn nào làm được thì giúp mình với còn bài này thì mình không biết làm. sorry nha

22 tháng 10 2019

AI NÓI TỚ NÓI SAI, CÓ NÓI VỀ BÀI ĐÂU MÀ SAI ĐIÊN À MẤY BẠN KIA

8 tháng 9 2018

Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)

\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)

\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)

\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)

\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)

\(\Rightarrow A>B.\)

Vậy \(A>B.\)

8 tháng 8 2017

Ta có :

\(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)

\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)

\(=3-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)

\(\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)