Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
Xét tg ABC có :
E là trđ AB
D là trđ AC
Nên Ed là Đg TB của tg ABC
Nên ED // BC ; ED=1/2 BC (1)
Xét tg GBC có
M là trđ BG
N là trđ GC
nên MN là đg tb của tg GBC
MN //BC; MN=1/2BC (2)
từ (1) và (2) ED=MN; ED//MN nêm EDNM là HBH
A B C D E G M N
b) Vì CE;BD lần lượt là đườg trung tuyến của tam giác ABC và cắt nhau tại G (gt)
=>G là trọng tâm của tam giác ABC
Vì M trung điểm BG => MG=1/3BD
N trung điểm CG=> NG=1/3EC
Do đó: => BD=EC => AB=AC
=> tam giác ABC cân tại A
Vậy tam giác ABC cân tại A thì MNDE là hcn