Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{B}+\widehat{C}=90^0\)
c: Góc kề bù với C bằng tổng của góc A cộng góc B
a: \(C=3x^2+y^2-2xy-x^2-2y^2+xy-4x^2+y^2\)
\(=-2x^2-xy\)
Bậc là 2
b: \(D=x^2-2xy+y^2-x^2-y^2-2xy-4xy+1=-8xy+1\)
bậc là 2
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a-3b}{2\cdot5-3\cdot2}=\dfrac{12}{4}=3\)
Do đó: a=15; b=6
d) Áp dụng t/c dtsbn:
\(\dfrac{a}{5}=\dfrac{b}{2}=\dfrac{2a}{10}=\dfrac{3b}{6}=\dfrac{2a-3b}{10-6}=\dfrac{12}{4}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=3.5=15\\b=3.2=6\end{matrix}\right.\)
f) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=-\dfrac{z}{2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{-z}{2}=\dfrac{x+y-z}{5+3+2}=\dfrac{2}{10}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}.5=1\\y=\dfrac{1}{5}.3=\dfrac{3}{5}\\z=\dfrac{1}{5}.\left(-2\right)=-\dfrac{2}{5}\end{matrix}\right.\)
g) \(\dfrac{x}{4}=\dfrac{y}{5}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
\(\Rightarrow xy=20k^2=500\Rightarrow k=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=20\\y=25\end{matrix}\right.\\\left\{{}\begin{matrix}x=-20\\y=-25\end{matrix}\right.\end{matrix}\right.\)
1) \(\left(\dfrac{-13}{17}-\dfrac{31}{52}\right)-\left(\dfrac{73}{52}-\dfrac{13}{17}+\dfrac{5}{6}\right)-\dfrac{3}{4}\)
\(=\dfrac{-13}{17}-\dfrac{31}{52}-\dfrac{73}{52}+\dfrac{13}{17}-\dfrac{5}{6}-\dfrac{3}{4}\)
\(=\left(\dfrac{-13}{17}+\dfrac{13}{17}\right)-\left(\dfrac{31}{52}+\dfrac{73}{52}\right)-\left(\dfrac{5}{6}+\dfrac{3}{4}\right)\)
\(=0-2-\dfrac{19}{12}\)
\(=-2-\dfrac{19}{12}\)
\(=\dfrac{-43}{12}\)
a: \(=\dfrac{10}{7}-\dfrac{10}{7}+\dfrac{1}{4}=\dfrac{1}{4}\)
b: \(=\dfrac{6}{5}\left(\dfrac{19}{11}+\dfrac{36}{11}\right)=\dfrac{6}{5}\cdot5=6\)
c: \(=3\cdot\dfrac{1}{4}-6=\dfrac{3}{4}-\dfrac{24}{4}=-\dfrac{21}{4}\)
a) Xét tam giác ABC vuông tại A:
\(\widehat{B}+\widehat{C}=90^o.\)
Mà \(\widehat{B}=60^o\left(gt\right).\)
\(\rightarrow\widehat{C}=30^o.\)
b) Xét tam giác ABM và tam giác DCM:
MA = MD (gt).
MB = MC (M là trung điểm BC).
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh).
\(\rightarrow\) Tam giác ABM = Tam giác DCM (c - g -c).
c) Ta có: \(\widehat{ABM}+\widehat{ACM}=90^o\) (Tam giác ABC vuông tại A).
Mà \(\widehat{ABM}=\widehat{DCM}\) (Tam giác ABM = Tam giác DCM).
\(\rightarrow\) \(\widehat{DCM}+\widehat{ACM}=90^o.\rightarrow\widehat{ACD}=90^o.\rightarrow CD\perp AC.\)