K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét (O) có 

\(\widehat{PFE}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{PFE}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{PFN}=90^0\)

Xét tứ giác PFMN có 

\(\widehat{PFN}\) và \(\widehat{PMN}\) là hai góc cùng nhìn cạnh PN

\(\widehat{PFN}=\widehat{PMN}\left(=90^0\right)\)

Do đó: PFMN là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bài 3: 

a: Xét ΔDHE vuông tại H có HI là đường cao ứng với cạnh huyền DE

nên \(DI\cdot DE=DH^2\left(1\right)\)

Xét ΔDHF vuông tại H có HK là đường cao ứng với cạnh huyền DF

nên \(DK\cdot DF=DH^2\left(2\right)\)

Từ (1) và (2) suy ra \(DI\cdot DE=DK\cdot DF\)

Bài 2: 

a: Xét ΔMKN vuông tại K có KE là đường cao ứng với cạnh huyền MN

nên \(ME\cdot MN=MK^2\left(1\right)\)

Xét ΔMKP vuông tại K có KF là đường cao ứng với cạnh huyền MP

nên \(MF\cdot MP=MK^2\left(2\right)\)

từ (1) và (2) suy ra \(ME\cdot MN=MF\cdot MP\)

17 tháng 10 2021

bạn tự vẽ hình giúp mik nha

a. xét \(\Delta ADN\) và \(\Delta BAM\) có

AB=AD(gt)

\(\widehat{ADN}=\widehat{BAM}=90^o\)

DN=MA(N,M là trung điểm của cạnh DC,AD)

\(\Rightarrow\Delta ADN\sim\Delta BAM\left(c.g.c\right)\)

\(\Rightarrow\widehat{DNA}=\widehat{AMB}\)

mà:\(\widehat{DNA}+\widehat{DAN}=90^o\Rightarrow\widehat{BMA}+\widehat{DAN}=90^o\)

\(\Rightarrow\Delta MAI\) vuông tại I

\(\Rightarrow AI\perp MI\) hay \(MB\perp AN\)

b.ta có M là trung điểm của AD\(\Rightarrow AM=\dfrac{1}{2}AD=\sqrt{5}\)

trong \(\Delta MAB\) vuông tại A có

\(MB=\sqrt{AM^2+AB^2}=\sqrt{\sqrt{5^2}+\left(2\sqrt{5}\right)^2}=5\)

\(AM^2=MB.MI\Rightarrow MI=\dfrac{AM^2}{MB}=\dfrac{\sqrt{5^2}}{5^5}=0,2\)

\(AI.MB=AM.AB\Rightarrow AI=\dfrac{AM.AB}{MB}=\dfrac{\sqrt{5}.2\sqrt{5}}{5}\)=2

c.IB=MB-MI=5-0,2=4,8

\(S_{\Delta AIB}=\dfrac{AI.IB}{2}=\)\(\dfrac{2.4,8}{2}=4,8\)

\(S_{\Delta ADN}=\dfrac{AD.DN}{2}=\dfrac{2\sqrt{5}.\sqrt{5}}{2}=5\)

\(S_{\Delta ABCD}=\left(2\sqrt{5}\right)^2=20\)

\(S_{BINC}=S_{ABCD}-S_{\Delta AIB}-S_{\Delta DAN}\)=20-4,8-5=10,2

 

 

17 tháng 10 2021

Ok mình cảm ơn bạn nha

 

NV
4 tháng 1

d.

Ta có: \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)

\(OB=OC=R\)

\(\Rightarrow OA\) là trung trực BC hay OA vuông góc BC tại I

Xét hai tam giác vuông AIB và ABO có:

\(\left\{{}\begin{matrix}\widehat{AIB}=\widehat{ABO}=90^0\\\widehat{BAI}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIB\sim\Delta ABO\left(g.g\right)\)

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{AB}{AO}\Rightarrow AI.AO=AB^2\)

Theo c/m câu c có \(AB^2=AE.AF\)

\(\Rightarrow AI.AO=AE.AF\)

e.

Từ đẳng thức trên ta suy ra: \(\dfrac{AI}{AF}=\dfrac{AE}{AO}\)

Xét hai tam giác AIE và AFO có:

\(\left\{{}\begin{matrix}\dfrac{AI}{AF}=\dfrac{AE}{AO}\left(cmt\right)\\\widehat{OAF}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIE\sim\Delta AFO\left(c.g.c\right)\)

\(\Rightarrow\widehat{AFO}=\widehat{AIE}\)

Mà \(\widehat{AIE}+\widehat{OIE}=180^0\) (kề bù)

\(\Rightarrow\widehat{AFO}+\widehat{OIE}=180^0\)

\(\Rightarrow\) Tứ giác FOIE nội tiếp

NV
4 tháng 1

a.

Do AB là tiếp tuyến của (O) \(\Rightarrow AB\perp OB\Rightarrow\widehat{ABO}=90^0\)

\(\Rightarrow\) 3 điểm A, B, O thuộc đường tròn đường kính OA (1)

Tương tự AC là tiếp tuyến của (O) nên 3 điểm A, C, O thuộc đường tròn đường kính OA

\(\Rightarrow\) 4 điểm A, B, C, O thuộc đường tròn đường kính OA hay tứ giác ABOC nội tiếp

b.

Do M là trung điểm EF \(\Rightarrow OM\perp EF\Rightarrow\widehat{OMA}=90^0\)

\(\Rightarrow\) 3 điểm A, M, O thuộc đường tròn đường kính OA (2)

(1);(2) \(\Rightarrow\) 4 điểm A, B, M, O thuộc đường tròn đường kính OA

Hay tứ giác ABMO nội tiếp

c.

Xét hai tam giác ABE và AFB có:

\(\left\{{}\begin{matrix}\widehat{EAB}\text{ chung}\\\widehat{ABE}=\widehat{AFB}\left(\text{cùng chắn BE}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta ABE\sim\Delta AFB\left(g.g\right)\)

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AE}{AB}\) \(\Rightarrow AB^2=AE.AF\)

1 tháng 10 2018

\(a)\)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\)\(\sqrt{6-6\sqrt{6}+9}+\sqrt{24-12\sqrt{6}+9}\)

\(=\)\(\sqrt{\left(\sqrt{6}+3\right)}+\sqrt{\left(\sqrt{24}+3\right)}\)

\(=\)\(\left|\sqrt{6}+3\right|+\left|\sqrt{24}+3\right|\)

\(=\)\(\sqrt{6}+3+\sqrt{24}+3\)

\(=\)\(\sqrt{6}\left(1+\sqrt{4}\right)+9\)

\(=\)\(3\sqrt{6}+9\)

Chúc bạn học tốt ~ 

1 tháng 10 2018

\(b)\)\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

\(=\)\(\left|2-\sqrt{3}\right|+\sqrt{3-2\sqrt{3}+1}\)

\(=\)\(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\) ( vì \(2=\sqrt{4}>\sqrt{3}\) ) 

\(=\)\(2-\sqrt{3}+\left|\sqrt{3}-1\right|\)

\(=\)\(2-\sqrt{3}+\sqrt{3}-1\) ( vì \(\sqrt{3}>\sqrt{1}=1\) ) 

\(=\)\(1\)

Chúc bạn học tốt ~ 

PS : mới lớp 8 sai thì thông cảm >.< 

1: 

=>|2x+5|=5

=>2x+5=5 hoặc 2x+5=-5

=>x=0 hoặc x=-5

2: =>|x-2|=3

=>x-2=3 hoặc x-2=-3

=>x=-1 hoặc x=5

3: =>|2x-1|=1

=>2x-1=1 hoặc 2x-1=-1

=>x=0 hoặc x=1

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

Xem lại đề.