Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu có đáp án trắc nghiệm thì theo mình làm bài này nhanh như sau:
tìm tập xác định D=R
tính y', tìm điều kiện để cho hàm số có 3 điểm cực trị là pt y'=0 có 3 nghiệm phân biệt
áp dụng công thức tính nhanh :b^2 -6ac, suy ra m , kết hợp với điều kiện hàm số có 3 điểm cực trị, suy ra m cần tìm
lưu ý: công thức mình đưa ra là b^2-6ac chỉ áp dụng cho hàm bậc 4 trùng phương, 3 điểm cực trị là 3 đỉnh của tam giác và có trọng tâm là gốc tọa độ.
1) Ta có \(y'=\left(x^6\left(1-x\right)^5\right)'\)
\(=\left(x^6\right)'\left(1-x\right)^5+\left[\left(1-x\right)^5\right]'.x^6\)
\(=6x^5\left(1-x\right)^5+5\left(1-x\right)^4\left(1-x\right)'.x^6\)
\(=6x^5\left(1-x\right)^5-5x^6\left(1-x\right)^4\)
\(=x^5\left(1-x\right)^4\left[6\left(1-x\right)-5x\right]\)
\(=x^5\left(1-x\right)^4\left(6-11x\right)\)
\(y'=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{6}{11}\end{matrix}\right.\)
Vậy hàm số đã cho đạt cực trị tại \(x=0,x=1,x=\dfrac{11}{6}\)
2) Có \(y'=-2.\left(2x\right)'\sin2x\) \(=-4\sin2x\)
\(y'=0\Leftrightarrow\sin2x=0\) \(\Leftrightarrow2x=k\pi\left(k\inℤ\right)\) \(\Leftrightarrow x=\dfrac{k\pi}{2}\) \(\left(k\inℤ\right)\)
Vậy hàm số đã cho đạt cực trị tại \(x=\dfrac{k\pi}{2}\left(k\inℤ\right)\)
nếu đề đúng
\(f'\left(x\right)=\frac{3}{2}x^2+m^2-4\)
\(f''\left(x\right)=3x\)
Để f(x) đạt cực đại tại x=1 <=> \(\hept{\begin{cases}f'\left(1\right)=0\\f''\left(1\right)< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{3}{2}+m^2-4=0\\3.1< 0\end{cases}}\)vô lí
Vậy ko tồn tại m
Mặt cầu tâm \(I\left(1;1;0\right)\) bán kính \(R=5\)
\(\Rightarrow IA=\sqrt{6^2+8^2}=10=2R\)
Gọi C là trung điểm IA \(\Rightarrow C\left(4;5;0\right)\Rightarrow IC=R=5\Rightarrow C\in\left(S\right)\)
Gọi D là trung điểm IC \(\Rightarrow D\left(\dfrac{5}{2};3;0\right)\), đồng thời do D là trung điểm IC \(\Rightarrow MD\perp IC\) và IM=IC=R hay tam giác MDF vuông tại D
Lại có: \(CM=CA=CI=R\Rightarrow\) tam giác AMI vuông tại M
\(\Rightarrow\Delta_VMID\sim\Delta_VAIM\) (chung góc I)
\(\Rightarrow\dfrac{MA}{MD}=\dfrac{AI}{AM}=\dfrac{2R}{R}=2\Rightarrow MA=2MD\)
\(\Rightarrow P=MA+2MB=2MD+2MB=2\left(MD+MB\right)\ge2DB=2\sqrt{\left(\dfrac{5}{2}\right)^2+\left(3-8\right)^2+0^2}=5\sqrt{5}\)
4.
a.
- Với \(m=0\Rightarrow y=-1\) hàm không có tiệm cận
- Với \(m\ne0\)
\(\lim\limits_{x\rightarrow\infty}\dfrac{x-1}{mx^2-x+1}=0\Rightarrow y=0\) là tiệm cận ngang
Xét phương trình \(mx^2-x+1=0\) có \(\Delta=1-4m\)
+ Với \(m>\dfrac{1}{4}\Rightarrow\Delta< 0\Rightarrow\) \(mx^2-x+1=0\) vô nghiệm hay ĐTHS ko có tiệm cận đứng
+ Với \(m=\dfrac{1}{4}\Rightarrow mx^2-x+1=0\) có nghiệm kép hay ĐTHS có 1 tiệm cận đứng
+ Với \(m< \dfrac{1}{4}\Rightarrow mx^2-x+1=0\) có 2 nghiệm pb (và luôn khác 1 với \(m\ne0\) ) nên ĐTHS có 2 tiệm cận đứng.
Kết luận...
4b.
- Với \(m=0\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{-1}{x^2-x-2}=0\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow\left\{-1;2\right\}}\dfrac{-1}{x^2-x-2}=\infty\) nên \(x=-1;x=2\) là 2 tiệm cận đứng
- Với \(m\ne0\)
\(\lim\limits_{x\rightarrow\infty}\dfrac{mx^3-1}{x^2-x-2}=\infty\) nên ĐTHS không có tiệm cận ngang
Phương trình \(x^2-x-2=0\) có 2 nghiệm \(x=\left\{-1;2\right\}\) nên:
+ Nếu \(m=-1\Rightarrow-x^3-1=0\) có 1 nghiệm \(x=-1\Rightarrow\) hàm có đúng 1 tiệm cận đứng \(x=2\)
+ Nếu \(m=\dfrac{1}{8}\Rightarrow\dfrac{1}{8}x^3-1=0\) có 1 nghiệm \(x=2\Rightarrow\) ĐTHS hàm có đúng 1 tiệm cận đứng \(x=-1\)
+ Nếu \(m\ne\left\{-1;\dfrac{1}{8}\right\}\Rightarrow mx^3-1=0\) có nghiệm khác \(\left\{-1;2\right\}\Rightarrow\) ĐTHS có 2 tiệm cận đứng.
Kết luận...
\(y'=\left(2m+1\right)\cos x+3-m\)
Hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0,\forall x\in R\)
\(\Leftrightarrow\left(2m+1\right)\cos x\le m-3\) (1)
*TH: \(2m+1< 0\Leftrightarrow m< \frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\ge\frac{m-3}{2m+1}\) (không thoả với mọi x)
*TH: \(2m+1>0\Leftrightarrow m>\frac{-1}{2}\), ta có
\(\left(1\right)\Leftrightarrow\cos x\le\frac{m-3}{2m+1}\) (2)
(2) đúng với mọi x khi và chỉ khi \(\left|\frac{m-3}{2m+1}\right|>1\Leftrightarrow\left[\begin{array}{nghiempt}m< -4\\m>\frac{2}{3}\end{array}\right.\)
kết hợp \(m>\frac{-1}{2}\) ta có m > 3/2 là giá trị cần tìm