Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\ne0\)
\(\dfrac{x-1}{3}+\dfrac{x+3}{x}=2\)
\(\Leftrightarrow\dfrac{x\left(x-1\right)+3\left(x+3\right)}{3x}=\dfrac{6x}{3x}\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x+3\right)=6x\)
\(\Leftrightarrow x^2-x+3x+9-6x=0\)
\(\Leftrightarrow x^2-4x+9=0\)
Ta có: \(x^2-4x+9=x^2-4x+4+5=\left(x-2\right)^2+5\ge5>0\)
Vậy pt vô nghiệm
\(P=\left(\dfrac{x^2+1}{x^2-9}-\dfrac{x}{x+3}+\dfrac{5}{3-x}\right):\left(\dfrac{2x+10}{x+3}-1\right)\)
\(=\left(\dfrac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{2x+10}{x+3}-\dfrac{x+3}{x+3}\right)\)
\(=\left(\dfrac{x^2+1-x^2+3x-5x-15}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{2x+10-x-3}{x+3}\right)\)
\(=\left(\dfrac{-2x-14}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{x+7}{x+3}\right)\)
\(=\dfrac{-2\left(x+7\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x+7}\)
\(=\dfrac{-2}{x-3}\)
đk : x khác -3 ; 3 ; -7
\(P=\left(\dfrac{x^2+1+x\left(x-3\right)+5x+15}{x^2-9}\right):\left(\dfrac{2x+10-x-3}{x+3}\right)\)
\(=\dfrac{2x^2+1+2x+15}{x^2-9}:\dfrac{x+7}{x+3}=\dfrac{2x^2+2x+16}{\left(x-3\right)\left(x+7\right)}\)
a: Xét ΔADH vuông tại H và ΔBCI vuông tại I có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔADH=ΔBCI
Suy ra: DH=CI
a: Ta có: \(\dfrac{1-3x}{2x}-\dfrac{2-3x}{2x-1}-\dfrac{3x-2}{4x^2-2x}\)
\(=\dfrac{\left(1-3x\right)\left(2x-1\right)-2x\left(2-3x\right)-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{2x-1+6x^2+3x-4x+6x^2-3x+2}{2x\left(2x-1\right)}\)
\(=\dfrac{12x^2-2x+1}{4x^2-2x}\)
b: Ta có: \(\dfrac{x+2}{x^3-1}-\dfrac{-2}{x^2+x+1}-\dfrac{1}{x+1}\)
\(=\dfrac{x+2+2x-2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^3-1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x^2+3x-x^3+1}{\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)}\)
Bài 1: Ta có:
\(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)
\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)
\(A=\dfrac{a^3+b^3+c^3}{abc}\) (2)
Mà: \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^3=0\)
\(\Rightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3a^2c+3ac^2+6abc=0\)
\(\Rightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3b^2c+3bc^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3+\left(a+b+c\right)\left(3ab+3ac+3bc\right)-3abc=0\) (1)
Thay \(a+b+c=0\) (1) ta có:
\(a^3+b^3+c^3+0\cdot\left(3ab+3ac+3bc\right)-3abc=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Thay vào (2) ta có:
\(\dfrac{3abc}{abc}=3\)
ậy
1:
a+b=c=0
=>a+b=-c; a+c=-b; b+c=-a
\(A=\dfrac{a^3+b^3+c^3}{abc}\)
\(=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)+c^3}{abc}=\dfrac{\left(-c\right)^3+3bac+c^3}{abc}\)
=3abc/abc=3
a: Xét tứ giác ABKC có
M là trung điểm của BC
M là trung điểm của AK
Do đó: ABKC là hình bình hành
mà AB=AC
nên ABKC là hình thoi