Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình thấy đề này bị sai nhé bạn .
Trong ngoặc khi quy đồng rút gọn thì ở mẫu vẫn sẽ có nhân tử 97 là số nguyên tố, Mà 2014^2015 không chia hết cho 97
=> A không là số nguyên
Mình sửa đề thành :
\(A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{98}\right)\cdot98!\\ =2\cdot3\cdot...\cdot98+1\cdot3\cdot...\cdot98+...+1\cdot2\cdot...\cdot96\cdot98+1\cdot2\cdot...\cdot97\\ =\left(2\cdot3\cdot...\cdot98+1\cdot2\cdot...\cdot97\right)+\left(1\cdot3\cdot...\cdot98+1\cdot2\cdot...96\cdot98\right)+...\\ =2\cdot3\cdot...\cdot97\cdot\left(1+98\right)+1\cdot3\cdot4\cdot...\cdot96\cdot98\cdot\left(2+97\right)+...=99\left(2\cdot3\cdot...\cdot97+1\cdot3\cdot4...\cdot96\cdot98\right).chia.het.cho.11\)
Đặt \(A=\left(n+2014^{2015}\right)\left(n+2015^{2014}\right)\)
- \(n=2k\)thì: \(n+2014^{2015}=2k+2014^{2015}\)\(⋮\)\(2\) \(\Rightarrow\)\(A⋮2\)
- \(n=2k+1\)
Ta có: \(n=2k+1\equiv1\left(mod2\right)\)
\(2015^{2014}\equiv1\left(mod2\right)\)
\(\Rightarrow\)\(n+2015^{2014}\)\(⋮2\)\(\Rightarrow\)\(A⋮2\)
Vậy
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
Bài giải
Ta có: C = 2014 + 20142 + 20143 +...+ 20142018
=> C = (2014.1 + 2014.2014) + (20142.1 + 20142.2014) +
(20143.1 + 20143.2014) +...+
(20142017.1 + 20142017.2018)
=> C = 2014.(2014 + 1) + 20143.(2014 + 1) +...+ 20142017.(2014 + 1)
=> C = (2014 + 20143 +...+ 20142017).(2014 + 1)
=> C = 2015.(2014 + 20143 +...+ 20142017
Vì 2015."viết lại" \(⋮\)2015
Nên C \(⋮\)2015
Vậy...
Vì \(\left(...4\right)^{2k+1}\)luôn có chữ số tận cùng là 4.
\(\Rightarrow2014^{2015}\)có chữ số tận cùng là 4.
\(\left(....5\right)^n\)luôn có chữ số tận cùng là 5
\(\Rightarrow2015^{2016}\)có chữ số tận cùng là 5.
\(\Rightarrow2014^{2015}+2015^{2016}=\left(....4\right)+\left(....5\right)=\left(....9\right)\)là một số lẻ
\(\Rightarrow2014^{2015}+2015^{2016}\)không chia hết cho 2.
Ta có: 2014\(^{2015}\)= 2014\(^{2012+3}\)= 2014\(^{2012}\)+ 2014\(^3\)= ...6+ ...4= ...0.
2015\(^{2016}\)= ...5.
=> 2014\(^{2015}\)+ 2015\(^{2016}\)= ...0+ ...5= ...5 không \(⋮\) cho 2.
=> Tổng trên không chia hết cho 2.
( n+ 2014 ) và ( n+2015 ) là hai số liên tiếp nên ta luôn có 1 trong 2 số là số chẵn mà số chẵn thì chia hết cho 2
Suy ra tích hai số luôn chia hết cho 2 với mọi n thuộc Z hoặc n thuộc N
2014+20142+....+20142015 = ( 2014 + 20142 ) + ... ( 20142014 + 20142015 )
= 2014.( 1 + 2014 ) + ... + 20142014.( 1 + 2014 )
= 2015.( 2014 + ..... + 20142014 ) chia hết cho 2015