Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk pit làm phần a thui
vì AG=2GM
+) AG=4 cm
=>4=2GM
=> MG=4:2=2 (cm)
+)gm+ag=am
+)mg=2 cm
+) ag=9cm
=>2+9=am
=> am=11 cm
tính độ dài đoạn cp và bn tương tự như trên
Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm a, Tính HM,PA,GB. b, Chứng minh tam giác HPG cân
a, áp dụng định lý pytago đối với tam giá vuông abc tao có mk chỉ làm dc phân a thôi phần b vẫn chưa
BC2 = AB2 + AC2 nghĩ ra bạn ak
BC2= 62 + 82
BC2=36+64
BC2=100
BC=căn bậc 2 của 100 và bằng 10
a) Theo bài ra: vuông tại A
áp dụng Định lý Pytago ta có
b)
Trong tam giác vuông ABC có trung tuyến AM nên
AG = ...
BC = \(\sqrt{8^2+6^2}\)= 10 cm
trung truyến AM = BC/2 = 5cm
AG = 2AM/3 = 10/3 cm.
trung tuyến BN = \(\sqrt{\frac{2BC^2+2BA^2-AC^2}{4}}\)= \(\sqrt{\frac{2\left(10^2+6^2\right)-8^2}{4}}\)
BG = 2BN/3
trung tuyến CP = \(\sqrt{\frac{2BC^2+2AC^2-AB^2}{4}}\)= \(\sqrt{\frac{2\left(10^2+8^2\right)-6^2}{4}}\)
BG = 2CP/3
A B C M N G
A)
Nhắc lại: -Trong 1 tam giác vuông bất kỳ, đường trung tuyến ứng với cạnh huyền của tam giác sẽ có độ dài bằng 1/2 cạnh huyền
Xét \(\Delta ABC\)vuông tại A
Có AM là trung tuyến
=> \(AM=\frac{1}{2}BC\left(đpcm\right)\)
b) Xét \(\Delta ABC\)vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
\(\Leftrightarrow BC^2=6^2+8^2\Leftrightarrow BC^2=100\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
Vì \(AM=\frac{1}{2}BC\)
\(\Leftrightarrow AM=\frac{1}{2}.100\Leftrightarrow AM=50\left(cm\right)\)
Ta có hai đường trung tuyến Am và BN cắt nhau tại G
=> G là trọng tâm tam giác ABC
\(\Rightarrow AG=\frac{2}{3}AM\)
\(\Leftrightarrow AG=\frac{2}{3}.50\Leftrightarrow AG\approx33,3\left(cm\right)\)
mình làm tiếp trang khác
a) Xét \(\text{∆}ABC\)vuông tại A
Vì AM là đường trung tuyến từ đỉnh A đến trung điểm cạnh huyền BC
=> \(AM=\frac{1}{2}BC\)(theo tính chất đường trung tuyến trong tam giác vuông) (đpcm)
b) Tính cạnh GA
Xét \(\text{∆}ABC\)vuông tại A
Theo định lí PYTAGO, ta có:
\(BC^2=AC^2+AB^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=\sqrt{100}=10\left(cm\right)\)
Mà \(AM=\frac{1}{2}BC\)nên:
\(AM=\frac{1}{2}BC=\frac{1}{2}.10=5\left(cm\right)\)
Vì BN và AM là hai đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)
Ta có: \(GA=\frac{2}{3}AM\)nên:
\(GA=\frac{2}{3}AM=\frac{2}{3}.5\approx3,3\left(cm\right)\)
Tính cạnh GB:
Xét \(\text{∆}ABC\)vuông tại A, ta có:
BN là đường trung tuyến của \(\text{∆}ABC\)nên:
\(CN=NA\)
=> \(NA=\frac{1}{2}AC=\frac{1}{2}.4=2\left(cm\right)\)
Xét \(\text{∆}ANB\)vuông tại A
Theo định lý PYTAGO, ta có:
\(BN^2=NA^2+AB^2\)
\(BN^2=2^2+6^2\)
\(BN^2=4+36\)
\(BN^2=40\)
\(BN=\sqrt{40}\approx6,3\left(cm\right)\)
Ta lại có:
\(GB=\frac{2}{3}BN=\frac{2}{3}.6,3=4,2\left(cm\right)\)
Tính cạnh GC:
Trong \(\text{∆}ABC\), vẽ đường trung tuyến từ C xuống trung điểm của AB, gọi D là trung điểm của cạnh AB
Vì CD là đường trung tuyến của \(\text{∆}ABC\)nên:
\(AD=DB\)
=> \(AD=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
Xét \(\text{∆}CAD\)vuông tại A
Theo định lí PYTAGO, ta có:
\(CD^2=AC^2+AD^2\)
\(CD^2=8^2+3^2\)
\(CD^2=64+9\)
\(CD^2=73\)
\(CD=\sqrt{73}=8,5\left(cm\right)\)
Ta lại có:
\(GC=\frac{2}{3}CD=\frac{2}{3}.8,5\approx5,7\left(cm\right)\)