K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a, áp dụng định lý pytago  đối  với tam giá vuông abc tao có                                      mk chỉ làm dc phân a thôi phần b vẫn chưa 

 BC2 = AB2 + AC2                                                                                                               nghĩ ra bạn ak

BC2= 62 + 82

BC2=36+64

BC2=100

BC=căn bậc 2 của 100 và bằng 10

19 tháng 7 2017

thank ban nha

19 tháng 7 2017

a, ta có : tam giác ABC có A=90o => tam giác ABC là tam giác vuông 

Áp dụng định lí py-ta-go trong tam giác ABC ta có :

                   AB2+AC2=BC2

mà AB=6cm ; AC=8cm

=> 62+82=BC2

    BC2=100

=> BC=10 cm

vì cac duong trung tuyen BN;CP cat nhau tai G  ( N c AC ; P c AB)

=> BP=PA=3cm ; AN=NC=4cm 

Áp dụng định lí py-ta-go trong tam giác vuông PAC và tam giác vuông BAN ta có :

     tam giác PAC :                                       tam giác BAN

 BN2=BA2+AN2                                         CP2=AP2+AC2

mà BA=6 cm ;AC=8cm ; AN=4cm ;AP=3cm

=>BN2=62+42                                            CP2=32+82

=> BN2=52                                                 CP2=73

=>BN=căn 52                                                 CP=căn 73

4 tháng 4 2016

mk pit làm phần a thui

vì AG=2GM 

+) AG=4 cm

=>4=2GM

=> MG=4:2=2 (cm)

+)gm+ag=am

+)mg=2 cm

+) ag=9cm

=>2+9=am

=> am=11 cm

tính độ dài đoạn cp và bn tương tự như trên

4 tháng 4 2016

cảm ơn rất nhiều ạ

26 tháng 3 2024

Cho tam giác HPG có 3 trung tuyến HM,PA,GB cắt nhau tại T . Biết TH = 3 cm,TP=TG=4 cm                               a, Tính HM,PA,GB.                                 b, Chứng minh tam giác HPG cân

       

21 tháng 5 2019

A B C G M P N

a) tg ABC đều 

mà G là trọng tâm
=> AG,CG,BG là dg pg
thì có các tg AGB, AGC,BGC cân

=> AG=CG=BG

b) tg APN cân tại A(tự cm)

mà góc A(lớn ) = 60độ

=> tg APN đều => góc ANP=góc ACB

=>PN//BC(...)

CMT vs các tg MNC,PMB

c)tg MNC=tgPMB=tg PNA(M,N,P lần lượt là tđ của BC,AC,AB)

=> MN=PM=PN

=> tg PMN đều

16 tháng 7 2015

a) Áp dụng định lí Py-ta-go vào tam giác ACM, ta có:

   \(AM^2+CM^2=CA^2\)

Hay \(3,5^2+CM^2=5^2\)=>\(CM^2\)=25-12,25=12,75 => CM=\(\sqrt{12,75}\)

Vì M là trung điểm của CB => CM =MB =\(\sqrt{12,75}\)

=> CB= 2. \(\sqrt{12,75}\) =\(\sqrt{51}\)

Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:

AC^2+AB^2=BC^2

Hay 5^2+AB^2=\(\sqrt{51}^2\)

=>AB=\(\sqrt{26}\)

b) BN=\(\frac{\sqrt{26}}{2}\)

CP=\(\frac{\sqrt{74}}{2}\)

Hình như vậy đó bạn

31 tháng 8 2020

A B C M N G

A) 

Nhắc lại: -Trong 1 tam giác vuông bất kỳ, đường trung tuyến ứng với cạnh huyền của tam giác sẽ có độ dài bằng 1/2 cạnh huyền

Xét \(\Delta ABC\)vuông tại A

Có AM là trung tuyến 

=> \(AM=\frac{1}{2}BC\left(đpcm\right)\)

b) Xét \(\Delta ABC\)vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)

\(\Leftrightarrow BC^2=6^2+8^2\Leftrightarrow BC^2=100\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vì \(AM=\frac{1}{2}BC\)

\(\Leftrightarrow AM=\frac{1}{2}.100\Leftrightarrow AM=50\left(cm\right)\)

Ta có hai đường trung tuyến Am và BN cắt nhau tại G 

=> G là trọng tâm tam giác ABC 

\(\Rightarrow AG=\frac{2}{3}AM\)

\(\Leftrightarrow AG=\frac{2}{3}.50\Leftrightarrow AG\approx33,3\left(cm\right)\)

mình làm tiếp trang khác

31 tháng 8 2020

a) Xét \(\text{∆}ABC\)vuông tại A

Vì AM là đường trung tuyến từ đỉnh A đến trung điểm cạnh huyền BC

=> \(AM=\frac{1}{2}BC\)(theo tính chất đường trung tuyến trong tam giác vuông) (đpcm)

b) Tính cạnh GA

Xét \(\text{∆}ABC\)vuông tại A

Theo định lí PYTAGO, ta có:

\(BC^2=AC^2+AB^2\)

\(BC^2=6^2+8^2\)

\(BC^2=36+64\)

\(BC^2=100\)

\(BC=\sqrt{100}=10\left(cm\right)\)

Mà \(AM=\frac{1}{2}BC\)nên:

\(AM=\frac{1}{2}BC=\frac{1}{2}.10=5\left(cm\right)\)

Vì BN và AM là hai đường trung tuyến nên G là trọng tâm của \(\Delta ABC\)

Ta có: \(GA=\frac{2}{3}AM\)nên:

\(GA=\frac{2}{3}AM=\frac{2}{3}.5\approx3,3\left(cm\right)\)

Tính cạnh GB:

Xét \(\text{∆}ABC\)vuông tại A, ta có:

BN là đường trung tuyến của \(\text{∆}ABC\)nên:

\(CN=NA\)

=> \(NA=\frac{1}{2}AC=\frac{1}{2}.4=2\left(cm\right)\)

Xét \(\text{∆}ANB\)vuông tại A

Theo định lý PYTAGO, ta có:

\(BN^2=NA^2+AB^2\)

\(BN^2=2^2+6^2\)

\(BN^2=4+36\)

\(BN^2=40\)

\(BN=\sqrt{40}\approx6,3\left(cm\right)\)

Ta lại có:

\(GB=\frac{2}{3}BN=\frac{2}{3}.6,3=4,2\left(cm\right)\)

Tính cạnh GC:

Trong \(\text{∆}ABC\), vẽ đường trung tuyến từ C xuống trung điểm của AB, gọi D là trung điểm của cạnh AB

Vì CD là đường trung tuyến của \(\text{∆}ABC\)nên:

\(AD=DB\)

=> \(AD=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
Xét \(\text{∆}CAD\)vuông tại A

Theo định lí PYTAGO, ta có:

\(CD^2=AC^2+AD^2\)

\(CD^2=8^2+3^2\)

\(CD^2=64+9\)

\(CD^2=73\)

\(CD=\sqrt{73}=8,5\left(cm\right)\)

Ta lại có:

\(GC=\frac{2}{3}CD=\frac{2}{3}.8,5\approx5,7\left(cm\right)\)