K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

1a_ 2d_3(chẳng gì đúng)_4c_5(chẳng có câu nào đúng)_6A_7C_8C

15 tháng 12 2016

. . A B O H C D I

a) Vì AD là tiếp tuyến của (O)

=> \(AD\perp AB\)

=> \(\widehat{DAB}=90^o\)

CÓ: OA=OB=OC(=R)

=> CO là tiếp tuyến của ΔABC

Mà: \(CO=\frac{1}{1}AB\left(cmt\right)\)

=> ΔABC vuông tại C

=> \(AC\perp BC\)

Xét ΔABD vuông tại A(cmt), mà AC là đường cao(cmt)

=> \(BC\cdot BD=AB^2\) ( theo hệ thức trong tam giác vuông)

=> \(BC\cdot BD=\left(2\cdot OB\right)^2=4R^2\)

b) Có: OA=OC(cmt)

=> ΔOAC cân tại O

=> \(\widehat{ACO}=\widehat{CAO}\)

Xét ΔACD vuông tại C(cmt)

mà: CI là tiếp tuyến ứng vs cạnh AD

=> IC=IA

=> ΔIAC cân tại I

=> \(\widehat{IAC}=\widehat{ICA}\)

Có: \(\widehat{IAC}+\widehat{CAO}=\widehat{DAB}=90^o\)

=> \(\widehat{ICA}+\widehat{ACO}=90^o\)

Hay: \(\widehat{ICO}=90^o\)

=> IC là tiếp tuyến của (O)

Phần c đề sai

15 tháng 12 2016

Cảm ơn bạn ha ^^

1) B

2) C,D sai

4) C

6) A,D đúng nhất

7) C

7 tháng 11 2017

1, A hk phai B

9 tháng 8 2017

k/ \(\sqrt{8+\sqrt{60}}-\sqrt{\dfrac{2}{\sqrt{15}+4}}=\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)

l/ \(\sqrt{\dfrac{3\sqrt{5}-1}{2\sqrt{5}+3}}=\sqrt{\dfrac{\left(3\sqrt{5}-1\right)\left(2\sqrt{5}-3\right)}{11}}=\sqrt{\dfrac{33-11\sqrt{5}}{11}}=\sqrt{3-\sqrt{5}}\)

\(\sqrt{\dfrac{\sqrt{5}+11}{7-2\sqrt{5}}}=\sqrt{\dfrac{\left(\sqrt{5}+11\right)\left(7+2\sqrt{5}\right)}{29}}=\sqrt{\dfrac{87+29\sqrt{5}}{29}}=\sqrt{3+\sqrt{5}}\)

\(\sqrt{\dfrac{3\sqrt{5}-1}{2\sqrt{5}+3}}-\sqrt{\dfrac{\sqrt{5}+11}{7-2\sqrt{5}}}=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\dfrac{-2\sqrt{5}}{\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}}\)

9 tháng 8 2017

ô/ \(\dfrac{8+2\sqrt{2}}{3-\sqrt{2}}-\dfrac{2+3\sqrt{2}}{\sqrt{2}}+\dfrac{\sqrt{2}}{1-\sqrt{2}}=4+2\sqrt{2}-3-\sqrt{2}-2-\sqrt{2}=-1\)

7 tháng 11 2017

Đáp án của phần trắc nghiệm như sau:

1-D

2-B

3-C

4-B

5-D

6-B

7-D

8-D

NM
5 tháng 9 2021

đây là bài lớp 10 chứ nhỉ

ta có \(AC=20\times2=40\text{ hải lí}\)\(AB=15\times2=30\text{ hải lí}\)

áp dụng định lý cosin ta có :

\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)

6 tháng 7 2017

MK hứng bài nào thì lm bài đấy nhé!

Bài 21:

Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

<=> \(\dfrac{ab+bc+ca}{abc}=0\)

<=> \(ab+bc+ac=0\)

<=> \(ab+bc+ac+c^2=c^2\)

<=> \(\sqrt{ab+bc+ac+c^2}=\sqrt{c^2}\)

<=> \(\sqrt{\left(a+c\right)\left(b+c\right)}=\left|c\right|\) (1)

Mặt khác: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) ; \(a,b>0;c\ne0\) => \(c< 0\) (2)

Từ (1); (2) => \(\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)

<=> \(2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)

<=> \(\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)

<=> \(\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=\left(\sqrt{a+b}\right)^2\)

<=> \(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) => Đpcm

14 tháng 7 2017

tks bn nhiều