K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

1

9 tháng 2 2017

1 đó

Bài 4: 

a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(M=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)

\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)

c: Để M=1/2 thì 2(x+1)=2

=>x+1=1

hay x=0

18 tháng 8 2016

A B M C D I K H x y K'

Kẻ hình phụ và các điểm như hình trên. (chú ý CK' , IH , DK vuông góc với AB)

Dễ dàng chứng minh được IK và IK' lần lượt là các đường trung bình của hình thang CDBM và CDMA  => K, K' cố định

=> \(\begin{cases}IK=\frac{1}{2}\left(CM+BD\right)\\IK'=\frac{1}{2}\left(AC+MD\right)\end{cases}\) 

\(\Rightarrow IK=IK'=\frac{1}{2}AB\) không đổi

Vì IK // BD nên góc DBA = góc IKA = 60 độ

=> tam giác IKK' là tam giác đều có cạnh không đổi

Từ I kẻ đường cao IH => H là trung điểm AB =>H cố định  (1) . Đặt AB = a

\(\Rightarrow IH^2=IK^2-\left(\frac{IK}{2}\right)^2=\left(\frac{a}{2}\right)^2-\left(\frac{a}{4}\right)^2=\frac{3a^2}{16}\Rightarrow IH=\frac{a\sqrt{3}}{4}\)(2) không đổi 

Suy ra \(I\in\left(H;\frac{a\sqrt{3}}{4}\right)\) hay tập hợp quỹ tích điểm I thuộc đường tròn tâm H bán kính \(\frac{a\sqrt{3}}{4}\) 

18 tháng 8 2016

Quí tích ?

2 tháng 11 2017

b)x3-2x2-4xy2+x

=x(x2-2x-4y2+1)

=x[(x2-2x+1)-4y2]

=x[(x-1)2-4y2]

=x(x-1-2y)(x-1+2y)

2 tháng 11 2017

c) (x+2)(x+3)(x+4)(x+5)-8

=[(x+2)(x+5)][(x+3)(x+4)]-8

=(x2+5x+2x+10)(x2+4x+3x+12)-8

=(x2+7x+10)(x2+7x+12)-8

đặt x2+7x+10 =a ta có

a(a+2)-8

=a2+2a-8

=a2+4a-2a-8

=(a2+4a)-(2a+8)

=a(a+4)-2(a+4)

=(a+4)(a-2)

thay a=x2+7x+10 ta đc

(x2+7x+10+4)(x2+7x+10-2)

=(x2+7x+14)(x2+7x+8)

bài 2 x3-x2y+3x-3y

=(x3-x2y)+(3x-3y)

=x2(x-y)+3(x-y)

=(x-y)(x2+3)

8 tháng 2 2017

1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)

\(\Leftrightarrow x-y=10y-10z\)

\(\Leftrightarrow x=11y-10z\)

Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:

\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)

Chá quá, có ghi nhìn không rõ đề

8 tháng 2 2017

2) \(2x^2=9x-4\)

\(\Leftrightarrow2x^2-9x+4=0\)

\(\Leftrightarrow2x^2-8x-x+4=0\)

\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow2x-1=0\) hoặc x-4=0

1) 2x-1=0<=>x=1/2

2)x-4=0<=>x=4(Loại)

=> x=1/2

13 tháng 11 2017

a) x3 - 4x2 + 4x

= x(x2 - 4x + 4)

= x(x - 2)2

b) x2 - 3x + 2

= x2 - x - 2x + 2

= (x2 - x) + (2x - 2)

= x(x - 1) + 2(x - 1)

= (x + 2)(x - 1)

c) 8x3 + \(\dfrac{1}{27}\)

= \(\left(2x+\dfrac{1}{3}\right)\)\(\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)

d) 64x3 - \(\dfrac{1}{8}\)

= \(\left(4x+\dfrac{1}{2}\right)\left(16x^2-2x+\dfrac{1}{4}\right)\)

e) x2 - 4 + (x - 2)2

= (x + 2)(x - 2) - (x - 2)2

= (x - 2)[(x + 2) - (x - 2)]

= (x - 2)(x + 2 - x + 2)

= 4(x - 2)

f) x3 - 2x3 + x - xy2

= -x3 + x - xy2

= -x(x2 - 1 + y2)

g) x3 - 4x2 - 12x + 27

= (x3 + 27) - (4x2 + 12x)

= (x + 3)(x2 - 3x + 9) - 4x(x + 3)

= (x + 3)[(x2 - 3x + 9) - 4x]

= (x + 3)(x2 - 3x + 9 - 4x)

= (x + 3)(x2 - 7x + 9)

h) 2x - 2y - x2 + 2xy - y2

= (2x - 2y) - (x2 - 2xy + y2)

= 2(x - y) - (x - y)2

= (x - y)(2 - x + y)

i) 3x2 + 6x + 3 - 3y2

= 3(x2 + 2x + 1 - y2)

= 3[(x2 + 2x + 1) - y2]

= 3[(x + 1)2 - y2]

= 3( x + 1 - y)(x + 1 + y)

k) 25 - x2 - y2 + 2xy

= 25 - (x2 - 2xy + y2)

= 25 - (x - y)2

= (5 - x + y)(5 + x - y)

l) 3x - 3y - x2 + 2xy - y2

= (3x - 3y) - (x2 - 2xy + y2)

= 3(x - y) - (x - y)2

= (x - y)(3 - x + y)

m) x2 - y2 + 2x - 2y

= (x2 - y2) + (2x - 2y)

= (x - y)(x + y) + 2(x - y)

= (x - y)(x + y + 2)

n) x4 + 2x3 - 4x - 4

= (x4 - 4) + (2x3 - 4x)

= (x2 - 2)(x2 + 2) + 2x(x2 - 2)

= (x2 - 2)(x2 + 2 + 2x)

o) x2(1 - x2) - 4x - 4x2

= x2(1 - x)( 1 + x) - 4x(1 + x)

= x(1 + x)[x(1 - x) - 4x]

= x(x + 1)(x - x2 - 4)

p) x3 + y3 + z3 - 3xyz

= x3 + y3 + z3 - 3x2y + 3x2y - 3xy2 + 3xy2 - 3xyz

= [(x3 + 3x2y + 3xy2 + y3) + z3] - (3x2y + 3xy2 + 3xyz)

= [(x + y)3 + z3] - 3xy(x + y + z)

= (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z)

= (x + y + z)(x2 + 2xy + y2 - xz - yz + z2 - 3xy)

= (x + y + z)(x2 + y2 + z2 - xy - xz - yz)

q) (x - y)3 + (y - z)3 + (z - x)3

= [(x - y) + (y - z)][(x - y)2 - (x - y)(y - z) + (y - z)2] + (z - x)3

= (x - z)(x2 - 2xy + y2 - xy + xz - y2 + yz + y2 - 2yz + z2) - (x - z)3

= (x - z)(x2 + y2 + z2 - 3xy + xz - yz) - (x - z)3

= (x - z)[x2 + y2 + z2 - 3xy + xz - yz - (x - z)2]

= (x - z)(x2 + y2 - 3xy + xz - yz - x2 + 2xz - z2)

= (x - z)(y2 - 3xy + 3xz - yz)

= (x - z)[(y2 - yz) - (3xy - 3xz)]

= (x - z)[y(y - z) - 3x(y - z)

= (x - z)(y - 3x)(y - z)

Nhớ tik nha

9 tháng 11 2017

a)\(2x^2-7xy+5y^2\)

\(=2x^2-2xy-5xy+5y^2\)

\(=2x\left(x-y\right)-5y\left(x-y\right)\)

\(=\left(x-y\right)\left(2x-5y\right)\)

9 tháng 11 2017

b)\(x^3+3x^2y-4xy^2-12y^3\)

\(=\left(x^3+3x^2y\right)-\left(4xy^2+12y^3\right)\)

\(=x^2\left(x+3y\right)-4y^2\left(x+3y\right)\)

\(=\left(x+3y\right)\left(x^2-4y^2\right)\)

\(=\left(x+3y\right)\left(x-2y\right)\left(x+2y\right)\)