Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow4x^2=9\)
=>(2x-3)(2x+3)=0
hay \(x\in\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\)
b: \(\Leftrightarrow4x^2-4x+1-4x^2+12x-x+3=-3\)
\(\Leftrightarrow7x+4=-3\)
hay x=-1
Bài 3:
x=2013
nên x+1=2014
\(A=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+2014\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+2014\)
=2014-x
=2014-2013=1
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
a) = \(\frac{x^2}{x\left(x-3\right)}+\frac{9-6x}{x\left(x-3\right)}\)
= \(\frac{x^2-6x+9}{x\left(x-3\right)}\)
= \(\frac{\left(x-3\right)^2}{x\left(x-3\right)}\)
= \(\frac{x-3}{x}\)
b) = \(\frac{3\left(2x-1\right)}{x}.\frac{3x^2}{\left(2x-1\right)\left(2x+1\right)}\)
= \(\frac{3.3x}{2x+1}\)
=\(\frac{9x}{2x+1}\)
c) = \(\frac{20x+40}{60x}+\frac{12x-60}{60x}-\frac{15x+120}{60x}\)
= \(\frac{17x-140}{60x}\)
d) = \(\frac{x^2-x+1}{x\left(x+1\right)}.\frac{x+1}{3x-2}.\frac{3\left(3x-2\right)}{x^2-x+1}\)
= \(\frac{3}{x}\)
Chúc bạn làm bài tốt
a, Ta có : \(3x^2+3y^2+4xy+2x-2y+2=\) 0
\(\Rightarrow2\left(x^2+2xy+y^2\right)+x^2+2x+1+y^2-2y+1=0\)
\(2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\forall x,y}\) \(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Vậy x = -1 và y = 1
a, <=> (2x^2+4xy+2y^2)+(x^2+2x+1)+(y^2-2y+1) = 0
<=>2.(x+y)^2+(x+1)^2+(y-1)^2 = 0
Vì 2.(x+y)^2 ; (x+1)^2 ; (y-1)^2 đều >= 0 nên VT >=0
Dấu "=" xảy ra <=> x+y=0 ; x+1=0 ; y-1=0 <=> x=-1 và y=1
Vậy (x,y) thuộc {(-1;1)}
k mk nha
Bài 4:
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(M=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
c: Để M=1/2 thì 2(x+1)=2
=>x+1=1
hay x=0