K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

a) n + 1 chia hết cho n - 3

=> n - 3+ 4 chia hết cho n - 3

=> 4 chia hết cho n-3

=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

thế n-3 vô từng trường hợp các ước của 4 rồi tim x

b) 2n + 5 chia hết cho n + 1

=> 2n + 2 + 3 chia hết cho n + 1

=> 2(n+1) + 3 chia hết cho n +1

=> 3 chia hết cho n + 1

=> n + 1 thuộc Ư(3) = {1;-1;3;-3}

tìm x giống bài a

c) 10n chia hết cho 5n - 3

=> 10n - 6 + 6 chia hết cho 5n - 3

=> 2.(5n - 3) + 6 chia hết cho 5n - 3

=> 6 chia hết cho 5n - 3

=> 5n - 3 thuộc Ư(6) = {1;-1;2;-2;3;-3;6;-6}

tìm x giống bài a

14 tháng 7 2016

a. n+1=(n-3)+4

(n+1) chia hết cho (n-3) thì (n-3)+4 chia hết cho (n-3)

Ta có (n-3) chia hết cho (n-3)

Suy ra 4 phải chia hết cho (n-3)

Vậy n= -1 ,1 , 2 , 4

b. 2n+5=2n+2+3=2(n+1)+3

tương tự câu a ta có 2(n+1) chia hết cho (n+1)

Suy ra 3 phải chia hết cho (n+1)

Vậy n=-2,0,2

c.10n=10n-6+6=2(5n-3) +6

Tiếp tục àm tương tự như câu a và b

30 tháng 12 2024

a;   (2n + 1) ⋮ (6  -n)

     [-2.(6 - n) + 13] ⋮ (6 - n)

                        13 ⋮ (6 - n)

       (6 - n) ϵ  Ư(13) = {-13; -1; 1; 13}

        Lập bảng ta có:

6 - n -13 -1 1 13
n 19 7 5 -7
n ϵ Z  tm tm tm tm

Theo bảng trên ta có: n ϵ {19; 7; 5; -7} 

Vậy các giá trị nguyên của n thỏa mãn đề bài là:

n ϵ {19; 7; 5; -7} 

   

 

 

30 tháng 12 2024

b; 3n ⋮ (5  - 2n)

   6n ⋮ (5  - 2n)

  [15 - 3(5 - 2n)] ⋮ (5  - 2n)

     15 ⋮ (5  -2n) 

  (5  - 2n) ϵ Ư(15) = {-15; -1; 1; 15}

Lập bảng ta có:

5 - 2n -15 -1 1 15
n 10 3 2 -5
n ϵ Z tm tm tm tm

  Theo bảng trên ta có: n ϵ {10; 3; 2; -5}

Vậy các giá trị nguyên n thỏa mãn đề bài là:

n ϵ {-5; 2; 3; 10}

 

5 tháng 10 2015

a,n + 4 chia hết cho n

Ta có n chia hết cho n
=> 4 chia hết cho n

=> n thuộc { 1;2;4 }

b,Ta có 3n chia hết cho n
=> 7 chia hết cho n

=> n thuộc { 1;7 }

4 tháng 12 2014

mau nha may ban, minh dang can gap lam!

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)