K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2021

Không có mô tả.

11 tháng 7 2021

Không có mô tả.

NV
2 tháng 5 2021

Trong mp đáy, qua B kẻ đường thẳng song song AC, lần lượt cắt DA và DC kéo dài tại E và F

\(\Rightarrow AC||\left(SEF\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SEF\right)\right)=d\left(A;\left(SEF\right)\right)\)

Gọi I là giao điểm AC và BD

Theo định lý Talet: \(\dfrac{ID}{IB}=\dfrac{DC}{AB}=3\Rightarrow\dfrac{ID}{BD}=\dfrac{3}{4}\)

Cũng theo Talet: \(\dfrac{DA}{DE}=\dfrac{DI}{DB}=\dfrac{3}{4}\Rightarrow AD=\dfrac{3}{4}DE\Rightarrow AE=\dfrac{1}{4}DE\)

\(\Rightarrow d\left(A;\left(SEF\right)\right)=\dfrac{1}{4}d\left(D;\left(SEF\right)\right)\)

Trong tam giác vuông EDF, kẻ \(DH\perp EF\) , trong tam giác vuông SDH, kẻ \(DK\perp SH\)

\(\Rightarrow DK\perp\left(SEF\right)\Rightarrow DK=d\left(D;\left(SEF\right)\right)\)

\(DE=\dfrac{4}{3}AD=\dfrac{4a}{3}\)\(DF=\dfrac{4}{3}DC=4a\)

\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}=\dfrac{5}{8a^2}\)

\(\dfrac{1}{DK^2}=\dfrac{1}{SD^2}+\dfrac{1}{DH^2}=\dfrac{1}{48a^2}+\dfrac{5}{8a^2}\Rightarrow DK=\dfrac{4a\sqrt{93}}{31}\)

\(\Rightarrow d\left(AC;SB\right)=\dfrac{1}{4}DK=\dfrac{a\sqrt{93}}{31}\)

16 tháng 7 2021

3cos2x + 10sinx + 1 = 3( 1 - 2sinx^2) + 10 sinx + 1

                                 = - 6 sinx^2 + 10sinx + 4

                                 = 2(3sinx + 1)(2- sinx)= 0

16 tháng 7 2021

ý 2 là trên đoạn nào bn ? 

4 tháng 7 2021

ĐK: `x \ne kπ`

`cot(x-π/4)+cot(π/2-x)=0`

`<=>cot(x-π/4)=-cot(π/2-x)`

`<=>cot(x-π/4)=cot(x-π/2)`

`<=> x-π/4=x-π/2+kπ`

`<=>0x=-π/4+kπ` (VN)

Vậy PTVN.

1 tháng 8 2021

hahihihihi

21 tháng 11 2023

Bài 2:

Sửa đề: \(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x^2+3x-5}{x-1}nếux\ne1\\2a+1nếux=1\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2x^2+3x-5}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+5\right)\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}2x+5=2+5=7\)

f(1)=2a+1

Để hàm số liên tục khi x=1 thì \(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)

=>2a+1=7

=>2a=6

=>a=3

25 tháng 9 2021

\(2cos^2x-4sinxcosx=0\) 

\(\left\{{}\begin{matrix}cosx=0\\cosx-2sinx=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\cos\left(\alpha+x\right)=0vớicos\alpha=\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)

8 tháng 9 2023

\(sina=\dfrac{1}{2}\left(0\le a\le\dfrac{\pi}{2}\right)\)

\(sin^2a+cos^2a=1\)

\(\Rightarrow cos^2a=1-sin^2a=1-\dfrac{1}{4}=\dfrac{3}{4}\)

\(\Rightarrow cosa=\dfrac{\sqrt[]{3}}{2}\) \(\left(0\le a\le\dfrac{\pi}{2}\Rightarrow cosa>0\right)\)

\(sin\left(a-\dfrac{\pi}{3}\right)\)

\(=sina.cos\dfrac{\pi}{3}+cosa.sin\dfrac{\pi}{3}\)

\(\)\(=\dfrac{1}{2}.\dfrac{1}{2}+\dfrac{\sqrt[]{3}}{2}.\dfrac{\sqrt[]{3}}{2}\)

\(\)\(=\dfrac{1}{4}+\dfrac{3}{4}=1\)

11 tháng 10 2023

2:

\(\Leftrightarrow\left\{{}\begin{matrix}u1+14d+u1+6d=60\\u1+11d+u1+3d=1170\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u1+20d=60\\2u1+14d=1170\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6d=-1110\\u1+10d=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-185\\u1=30-10d=1880\end{matrix}\right.\)

1: 

\(PT\Leftrightarrow cos\left(3x-\dfrac{pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)

=>\(\left[{}\begin{matrix}3x-\dfrac{\Omega}{4}=\dfrac{3}{4}\Omega+k2\Omega\\3x-\dfrac{\Omega}{4}=-\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=\Omega+k2\Omega\\3x=-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{3}+\dfrac{k2\Omega}{3}\\x=-\dfrac{1}{6}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)