Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{\sqrt[]{x}-1}+\dfrac{1}{1+\sqrt[]{x}}+1\left(x\ge0;x\ne1\right)\)
\(=\dfrac{\sqrt[]{x}+1+\sqrt[]{x}-1+x-1}{\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+1\right)}\)
\(=\dfrac{x+2\sqrt[]{x}-1}{x-1}\)
\(=\dfrac{x-1+2\sqrt[]{x}}{x-1}\)
\(=1+\dfrac{2\sqrt[]{x}}{x-1}\)
b) \(\dfrac{1}{\sqrt[]{x}+2}-\dfrac{2}{\sqrt[]{x}-2}-\dfrac{4}{4-x}\left(x\ge0;x\ne4\right)\)
\(=\dfrac{\sqrt[]{x}-2-2\left(\sqrt[]{x}+2\right)+4}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{\sqrt[]{x}-2-2\sqrt[]{x}-4+4}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{-\sqrt[]{x}-2}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{-\left(\sqrt[]{x}+2\right)}{\left(\sqrt[]{x}+2\right)\left(\sqrt[]{x}-2\right)}\)
\(=\dfrac{-1}{\sqrt[]{x}-2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{3}y=\dfrac{7}{3}\\x-\dfrac{1}{2}y=-\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{6}y=\dfrac{5}{2}\\x+\dfrac{1}{3}y=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{4}{3}\end{matrix}\right.\)
Lời giải:
Lấy PT(1) trừ PT(2) theo vế:
$\frac{y}{3}+\frac{y}{2}=\frac{7}{3}+\frac{1}{6}$
$\Leftrightarrow \frac{5}{6}y=\frac{5}{2}$
$\Leftrightarrow y=3$
$x=\frac{7}{3}-\frac{y}{3}=\frac{7}{3}-1=\frac{4}{3}$
b: \(\sqrt{8-2\sqrt{15}}-\sqrt{5}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}\)
\(=-\sqrt{3}\)
c: \(\sqrt{11-6\sqrt{2}}=3-\sqrt{2}\)
d: \(\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)
Bạn cần giúp bài nào ạ? Nếu bạn cần giúp hết, bạn tách các câu ra từng CH riêng nhé, không ai làm hết được tất cả trong 1 CH đâu bạn, mà có làm thì chất lượng cũng chưa được cao.
\(\Delta'=4-\left(m+1\right)\ge0\Rightarrow m\le3\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1^2+x_2^2=5\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\left(x_1+x_2\right)\)
\(\Leftrightarrow16-2\left(m+1\right)=20\)
\(\Leftrightarrow m=-3\) (thỏa mãn)
a. Ta có: \(x^2-4x+m+1=0\)
Thay m=2 ta được: \(x^2-4x+2+1=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b. Để phương trình có 2 nghiệm phân biệt thì \(\Delta=\left(-4\right)^2-4.1.\left(m+1\right)>0\)
\(\Leftrightarrow16-4\left(m+1\right)>0\Leftrightarrow16>4\left(m+1\right)\Leftrightarrow4>m+1\Leftrightarrow m< 3\)
Áp dụng định lí Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)
Theo đề ta có: \(x_1^2+x_2^2=5\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(4\right)^2-2\left(m+1\right)=5.4\)
\(\Leftrightarrow16-2m-2=20\Leftrightarrow m=-3\) (TM)
2A:
a: 144
b: Không có
c: \(\dfrac{8}{7}\)
d: \(\dfrac{1}{75}\)
Xét $\Delta MNH$ và $\Delta P$ ta có:
$\large \widehat{MHN}=\widehat{MPT}=90^o$
$\large \widehat{MNP}=\widehat{MTP}$(Hai góc cùng chắn cung $MP$)
Do đó $\large \Delta MNH \sim \Delta MTP$ $(g-g)$
Từ đó: $\frac{MN}{MT}=\frac{MH}{MP}\Leftrightarrow MN.MP=MH.MT$
Xét tứ giác $NQKP$ ta có:
$\large \widehat{NQP}=\widehat{PKN}=90^o$
Mà hai góc này cùng chắn cung $NP$
Do đó tứ giác $NQKP$ là tứ giác nội tiếp
Suy ra: $\large \widehat{PKQ}+\widehat{PNQ}=180^o$ (Hai góc nội tiếp đối nhau)
Đồng thời ta có $\large \widehat{PKQ}+\widehat{MKQ}=180^o\Rightarrow \widehat{MNP}=\widehat{MTP}=\widehat{MKQ}$
Gọi $A$ là giao điểm của $QK$ và $MT$
Xét tứ giác $TPKA$ ta có:
$\large \widehat{MTP}+\widehat{PKQ}=\widehat{PKQ}+\widehat{MKQ}=180^o$
Mà hai góc này ở vị trí đối nhau nên tứ giác $TPAK$ là tứ giác nội tiếp
$\large \Leftrightarrow \widehat{MPT}+\widehat{TAK}=180^o\Leftrightarrow \widehat{TAK}=180^o-\widehat{MPT}=90^o$
Do đó $MT$ vuông góc với $QK$
Hình:
Dạ bài anh có nhầm lẫn gì kh ạ chứ khúc đầu e thấy hơi sai sai 😅😅
a) A = \(\sum\limits^{50}_1\left(2x\right)-\sum\limits^{50}_1\left(2x-1\right)\) = 5050
b) B = \(\sum\limits^{2010}_1x^3\) = 4084663313000