Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow\left(x^2+4x+3\right)^2>\left(x^2-4x-5\right)^2\)
\(\Leftrightarrow\left(x^2+4x+3\right)^2-\left(x^2-4x-5\right)^2>0\)
\(\Leftrightarrow\left(8x-8\right)\left(2x^2-2\right)>0\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)^2>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x\ne1\end{matrix}\right.\)
b/ \(\left|x^2-3x+2\right|-x^2+2x>0\)
- Với \(1< x< 2\Rightarrow x^2-3x+2< 0\) BPT tương đương:
\(-x^2+3x-2-x^2+2x>0\)
\(\Leftrightarrow-2x^2+5x-2>0\Rightarrow\frac{1}{2}< x< 2\Rightarrow1< x< 2\)
- Với \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\) BPT tương đương:
\(x^2-3x+2-x^2+2x>0\)
\(\Leftrightarrow-x+2>0\Rightarrow x< 2\Rightarrow x\le1\)
Vậy nghiệm của BPT đã cho là \(x< 2\)
a: \(x^2-2x+\left|x-1\right|-1=0\)
\(\Leftrightarrow x^2-2x+1+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2+\left|x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|x-1\right|+2\right)\left(\left|x-1\right|-1\right)=0\)
=>|x-1|=1
=>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: \(4x^2-4x-\left|2x-1\right|-1=0\)
\(\Leftrightarrow4x^2-4x+1-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|\right)^2-\left|2x-1\right|-2=0\)
\(\Leftrightarrow\left(\left|2x-1\right|-2\right)\left(\left|2x-1\right|+1\right)=0\)
=>|2x-1|=2
=>2x-1=2 hoặc 2x-1=-2
=>x=3/2 hoặc x=-1/2
c: \(\left|2x-5\right|+\left|2x^2-7x+5\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\\left(2x-5\right)\left(x-1\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{2}\)
d: \(x^2-2x-5\left|x-1\right|-5=0\)
\(\Leftrightarrow x^2-2x+1-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|\right)^2-5\left|x-1\right|-6=0\)
\(\Leftrightarrow\left(\left|x-1\right|-6\right)\left(\left|x-1\right|+1\right)=0\)
=>|x-1|=6
=>x-1=6 hoặc x-1=-6
=>x=7 hoặc x=-5
a) Đặt \(t=\left|2x-\dfrac{1}{x}\right|\Leftrightarrow t^2=\left(2x-\dfrac{1}{x}\right)^2=4x^2-4+\dfrac{1}{x^2}\Leftrightarrow t^2+4=4x^2+\dfrac{1}{x^2}\) ĐK \(t\ge0\)
từ có ta có pt theo biến t : \(t^2+4+t-6=0\)
\(\Leftrightarrow t^2+t-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left|2x-\dfrac{1}{x}\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{x}=1\\2x-\dfrac{1}{x}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x^2-x-1=0\\2x^2+x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
c: TH1: x>0
Pt sẽ là \(\dfrac{x^2-1}{x\left(x-2\right)}=2\)
=>2x^2-4x=x^2-1
=>x^2-4x+1=0
hay \(x=2\pm\sqrt{3}\)
TH2: x<0
Pt sẽ là \(\dfrac{x^2-1}{-x\left(x-2\right)}=2\)
=>-2x(x-2)=x^2-1
=>-2x^2+4x=x^2-1
=>-3x^2+4x+1=0
hay \(x=\dfrac{2-\sqrt{7}}{3}\)
b:
TH1: 2x^3-x>=0
\(4x^4+6x^2\left(2x^3-x\right)+1=0\)
=>4x^4+12x^5-6x^3+1=0
\(\Leftrightarrow x\simeq-0.95\left(loại\right)\)
TH2: 2x^3-x<0
Pt sẽ là \(4x^4+6x^2\left(x-2x^3\right)+1=0\)
=>4x^4+6x^3-12x^5+1=0
=>x=0,95(loại)
Dễ thấy \(3^{2^{4x+2}}+2^{3^{4x+1}}+5⋮2\left(1\right)\)
Ta chứng minh nó chia hết cho 11.
Ta có: \(2^{4x+1}=4.16^x\equiv2\left(mod5\right)\)
\(\Rightarrow3^{2^{4x+1}}=3^{5m+2}=9.243^m\equiv9\left(mod11\right)\)
Ta có: \(3^{4x+1}=3.81^x\equiv3\left(mod10\right)\)
\(\Rightarrow2^{3^{4x+1}}=2^{10n+3}=8.1024^n\equiv8\left(mod11\right)\)
\(\Rightarrow3^{2^{4x+1}}+2^{3^{4x+1}}+5\equiv9+8+5\equiv22\equiv0\left(mod11\right)\)
\(\Rightarrow3^{2^{4x+1}}+2^{3^{4x+1}}+5⋮11\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{2^{4x+1}}+2^{3^{4x+1}}+5⋮22\)
PS: Sửa đề luôn rồi nhé
Cái trên cùng quên sửa you sửa hộ thành \(3^{2^{4x+1}}\) dùm luôn đi nhé