\(\sqrt{2x-1}\)+x\(\sqrt{5-4x^2}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

Đk:\(\frac{1}{2}\le x\le\frac{\sqrt{5}}{2}\)

\(\left[\begin{matrix}x=\frac{1}{2}\\x=1\end{matrix}\right.\) (thỏa mãn)

Ok 2 phần "khó" nhất thì mk đã giải quyết r` nhé =))

13 tháng 1 2017

phần này mk biết làm mà.

NV
7 tháng 3 2020

1.

a/ ĐKXĐ: \(-1\le x\le5\)

\(\Leftrightarrow\sqrt{x+3}\le\sqrt{5-x}+\sqrt{x+1}\)

\(\Leftrightarrow x+3\le6+2\sqrt{\left(5-x\right)\left(x+1\right)}\)

\(\Leftrightarrow x-3\le2\sqrt{-x^2+4x+5}\)

- Với \(x< 3\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge3\) cả 2 vế ko âm, bình phương:

\(x^2-6x+9\le-4x^2+16x+20\)

\(\Leftrightarrow5x^2-22x-11\le0\) \(\Rightarrow\frac{11-4\sqrt{11}}{5}\le x\le\frac{11+4\sqrt{11}}{5}\)

\(\Rightarrow3\le x\le\frac{11+4\sqrt{11}}{5}\)

Vậy nghiệm của BPT đã cho là \(-1\le x\le\frac{11+4\sqrt{11}}{5}\)

NV
7 tháng 3 2020

1b/

Đặt \(\sqrt{2x^2+8x+12}=t\ge2\)

\(\Rightarrow x^2+4x=\frac{t^2}{2}-6\)

BPT trở thành:

\(\frac{t^2}{2}-12\ge t\Leftrightarrow t^2-2t-24\ge0\) \(\Rightarrow\left[{}\begin{matrix}t\le-4\left(l\right)\\t\ge6\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x^2+8x+12}\ge6\)

\(\Leftrightarrow2x^2+8x-24\ge0\Rightarrow\left[{}\begin{matrix}x\le-6\\x\ge2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Đặt \(\sqrt{3x^2-2x-1}=a; 2x=b(a\geq 0)\)

\(\Rightarrow b^2-a^2=x^2+2x+1\)

PT đã cho trở thành:

\(b^2+1=a+b\sqrt{b^2-a^2+1}\)

\(\Leftrightarrow (b^2-b\sqrt{b^2-a^2+1})+(1-a)=0\)

\(\Leftrightarrow b(b-\sqrt{b^2-a^2+1})-(a-1)=0(*)\)

Nếu \(b+\sqrt{b^2-a^2+1}=0\)

\(\Rightarrow \left\{\begin{matrix} b\leq 0\\ b^2=b^2-a^2+1\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b\leq 0\\ a^2-1=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ 3x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-\sqrt{7}}{3}\) (thử lại thấy không thỏa mãn)

Nếu \(b+\sqrt{b^2-a^2+1}\neq 0\) thì:

\((*)\Leftrightarrow b.\frac{a^2-1}{b+\sqrt{b^2-a^2+1}}-(a-1)=0\)

\(\Leftrightarrow (a-1)\left(\frac{b(a+1)}{b+\sqrt{b^2-a^2+1}}-1\right)=0\)

\(\Leftrightarrow (a-1).\frac{ba-\sqrt{b^2-a^2+1}}{b+\sqrt{b^2-a^2+1}}=0\)

\(\Rightarrow \left[\begin{matrix} a=1(1)\\ ba=\sqrt{b^2-a^2+1}(2)\end{matrix}\right.\)

Với (1): \(\Rightarrow a^2=1\Rightarrow 3x^2-2x-2=0\Rightarrow x=\frac{1\pm \sqrt{7}}{3}\) . Thử lại chỉ thấy \(x=\frac{1+\sqrt{7}}{3}\) thỏa mãn

Với (2): \(\Rightarrow b^2a^2=b^2-a^2+1\Rightarrow a^2(b^2+1)-(b^2+1)=0\)

\(\Rightarrow (b^2+1)(a^2-1)=0\Rightarrow a^2=1\) (giống như trên ta chỉ thu được \(x=\frac{1+\sqrt{7}}{3}\) )

Vậy..........

30 tháng 11 2016

ptvn

25 tháng 2 2017

1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)

\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)

\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)

17 tháng 6 2019

3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)

\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)

\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)

\(\Rightarrow x=6\)