Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi chiều rộng ban đầu là x(m) x>0
Chiều dài ban đầu : x+10(m)
Chiều rộng sau khi được tăng: x+5(m)
Chiều dài sau khi giảm: x+10-2=x+8(m)
Theo bài ra ta có pt
(x+8)(x+5)-x(x+10)=100
Giải ra được x=20(m)
Chiều dài : 20=10=30(m)
Diện tích mảnh vườn:20.30=600(m\(^2\))
b, Gọi vận tốc trung bình của xe mày là x(km/h) x>0
Vận tốc tb của ô tô là : x+6(km/h)
Theo bài ra ta có pt
2x+2(x+6)=140
Giải ra được x=32(km/h)
Vtb của ô tô là 32+6=38(km/h)
Bài 5:
a: 2x-(3-5x)=4(x+3)
=>2x-3+5x=4x+12
=>7x-3=4x+12
=>3x=15
=>x=5
b: =>5/3x-2/3+x=1+5/2-3/2x
=>25/6x=25/6
=>x=1
c: 3x-2=2x-3
=>3x-2x=-3+2
=>x=-1
d: =>2u+27=4u+27
=>u=0
e: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
=>x=1/7
f: =>-90+12x=-45+6x
=>12x-90=6x-45
=>6x-45=0
=>x=9/2
\(\Leftrightarrow\left(4x-3\right)\left(4x+3-x\right)=0\)
=>(4x-3)(3x+3)=0
=>x=3/4 hoặc x=-1
Hai tam giác vuông CAB và CFE đồng dạng (chung góc C)
\(\Rightarrow\dfrac{CF}{CA}=\dfrac{EF}{AB}=\dfrac{AD}{AB}=\dfrac{AD}{3}\)
\(\Rightarrow\dfrac{AC-AF}{AC}=\dfrac{AD}{3}\Leftrightarrow\dfrac{AC-2}{AC}=\dfrac{AD}{3}\Rightarrow AD=3\left(\dfrac{AC-2}{AC}\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{3}{2}AC\)
\(S_{ADEF}=AD.AF=2AD=6\left(\dfrac{AC-2}{AC}\right)\)
Theo đề bài: \(S_{ADEF}=\dfrac{1}{2}S_{ABC}\Rightarrow6\left(\dfrac{AC-2}{AC}\right)=\dfrac{1}{2}.\dfrac{3}{2}AC\)
\(\Leftrightarrow8\left(AC-2\right)=AC^2\Leftrightarrow AC^2-8AC+16=0\)
\(\Leftrightarrow\left(AC-4\right)^2=0\Leftrightarrow AC=4\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\) \(\Rightarrow S_{ADEF}=3\)
f: \(3ab-6a+b-2\)
\(=3a\left(b-2\right)+\left(b-2\right)\)
\(=\left(b-2\right)\left(3a+1\right)\)
a: \(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{2x+6}{x+3}=2\)
Lần sau bạn chú ý ghi đầy đủ yêu cầu đề, là phân tích đa thức thành nhân tử
$x^4+64=(x^2)^2+8^2+2.x^2.8-16x^2$
$=(x^2+8)^2-(4x)^2=(x^2+8-4x)(x^2+8+4x)$
a)
\(=\left(\dfrac{x}{x+3}-\dfrac{x^2+9}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x+1}{x\left(x-3\right)}-\dfrac{1}{x}\right)\)
\(=\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2+9}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x+1}{x\left(x-3\right)}-\dfrac{x-3}{x\left(x-3\right)}\right)\)
\(=\left(\dfrac{x^2-3x-x^2-9}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{3x+1-x+3}{x\left(x-3\right)}\right)\)
\(=\dfrac{-3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}:\dfrac{2x+4}{x\left(x-3\right)}\)
\(=\dfrac{-3}{\left(x-3\right)}\cdot\dfrac{x\left(x-3\right)}{2x+4}\\ =\dfrac{-3x}{2x+4}\)
b)
với `x=-1/2` (tmđk) ta có
\(\dfrac{-3\cdot\left(\dfrac{-1}{2}\right)}{2\cdot\left(-\dfrac{1}{2}\right)+4}=\dfrac{1}{2}\)
c)
để P=x thì
\(\dfrac{-3x}{2x+4}=x\)
\(=>-3x=\left(2x+4\right)\cdot x\)
\(-3x=2x^2+4x\)
\(2x^2+4x+3x=0\)
\(2x^2+7x=0\)
\(x\left(2x+7\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\2x+7=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
d)
mik ko bt lm=)
Gọi số sản phẩm tổ II làm được trong một giờ là \(x\) (sản phẩm) (\(x\in N,x>0\)).
Số sản phẩm tổ I làm được trong một giờ là \(\dfrac{3}{4}x\) (sản phẩm)
Thời gian tổ II làm xong là \(\dfrac{480}{x}\) giờ
Thời gian tổ I làm xong là \(\dfrac{480}{\dfrac{3}{4}x}=\dfrac{640}{x}\) giờ
Ta có phương trình: \(\dfrac{640}{x}-\dfrac{480}{x}=2\Rightarrow\dfrac{160}{x}=2\Rightarrow x=80\)
Vậy mỗi giờ tổ I làm được số sản phẩm là: \(\dfrac{3}{4}x=\dfrac{3}{4}.80=60\) (sản phẩm)