Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ
1.4x - 5(-3+x)=7
4x - 5(x-3) =7
4x - 5x + 15=7
-1x + 15=7
-1x =-8
=> x =8
2.5(x-3) - 2(x+6)=9
5x - 15 -2x -12=9
5x - 2x -15 - 12=9
5x - 2x=9 + 12 + 15
5x - 2x= 36
3x = 36
=> x = 12
3.4(x-1) - 3(x-2)=15
4x - 4 - 3x + 6=15
4x - 3x =15 - 6 + 4
4x - 3x = 13
=> x = 13
Nhớ mink nhoa pn
A\(=\frac{-3}{2}\cdot\frac{-4}{3}\cdot\frac{-5}{4}\cdot...\cdot\frac{-201}{200}\)
\(=\left(-1\right)\cdot\frac{3}{2}\cdot\left(-1\right)\cdot\frac{4}{3}\cdot\left(-1\right)\cdot\frac{5}{4}\cdot...\cdot\left(-1\right)\cdot\frac{201}{200}\)
\(=\left[\left(-1\right)\cdot\left(-1\right)\cdot\left(-1\right)\cdot...\cdot\left(-1\right)\right]\cdot\left(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{201}{200}\right)\)(Có 199 thừa số -1)
\(=\left(-1\right)\cdot\left(\frac{3\cdot4\cdot5\cdot...\cdot201}{2\cdot3\cdot4\cdot...\cdot200}\right)\)
\(=\left(-1\right)\cdot\frac{201}{2}\)
\(=-\frac{201}{2}\)
A, 1-3+5-7+...+97-99+101
= (1-3)+(5-7)+.....+(97-99)+101
=-2+-2+-2+......+-2+101
* Có số số hạng = - 2 trong biểu thức trên là: (99-1):2 +1= 50 ( số)
= -2 x 50 + 101
= -100 +101
=1
b,
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
Ta có : \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)
Đặt \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\)
Nên \(A< B\)
\(\Rightarrow A.B=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{199}{200}\right)\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{200}{201}\right)\)
\(\Rightarrow A.B=\frac{1}{201}\)
Vì \(A< B\)
\(\Rightarrow A^2< A.B=\frac{1}{201}\)
\(\Rightarrow A^2< \frac{1}{201}\)
\(\RightarrowĐPCM\)