Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, 1-3+5-7+...+97-99+101
= (1-3)+(5-7)+.....+(97-99)+101
=-2+-2+-2+......+-2+101
* Có số số hạng = - 2 trong biểu thức trên là: (99-1):2 +1= 50 ( số)
= -2 x 50 + 101
= -100 +101
=1
b,
A = - ( 1+2+3 +....+ 202) = - 203. 101 = -20503
B= ( 1+2-3-4) + ( 5+6-7-8) +..........+( 97+98 -99-100) + ( 101+102)
= -4 + (-4) .........+ (-4) + 203
= -4 .25 + 203 = 103
18576: {\(105^0\)+[2.(102+101−100−99+98+97−96−95+.........+6+5−4−3+2+1)−201]}^3
Đặt A=102+101−100−99+98+97−96−95+...............+6+5−4−3+2+1
A=(102+101−100−99)+(98+97−96−95)+........+(6+5−4−3)+2+1
A=4+4+...........+4+3
A=4.25+3
A=103
⇒18576:{1050+[2.(102+101−100−99+98+97−96−95+.........+6+5−4−3+2+1)−201]}^3
=18576:[1+(2.103)−201]^3
=18576:63
=18576:216
=86
=-(202+1)-(201+2)-......-(1+202)
=-203-203-203-......-203
=-20503
câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ
S=(1-2)+(3-4)+(5-6)+...+(199-200)
S=(-1)+(-1)+...+(-1)
S=(-1).100=-100
S=1+(2-3)+(-4+5)+...+(98-99)+(-100+101)
S=1+(-1)+1+..+(-1)+1
S=1+25.(-1)+25.1
S=1+(-25)+25
S=1+0
=1
\(\sqrt[]{^{ }_{ }_{ }|^{ }_{ }\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\begin{matrix}&&&&&\\&&&&&\\&&&&&\\&&&&∄&\\&&&&&\end{matrix}\right.ℤ}\)