K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2:

=>x=1-y và m(1-y)-y=2m

=>x=1-y và m-my-y=2m

=>x=1-y và y(-m-1)=m

=>x=1-y và y=-m/m+1

=>x=1+m/m+1=(m+2)/m+1 và y=-m/m+1

Để x,y nguyên thì m+1+1 chia hết cho m+1 và -m-1+1 chia hết cho m+1

=>\(m+1\in\left\{1;-1\right\}\)

mà m<>0

nên m=-2

13 tháng 2 2022

Ta có: \(x^2-3x+2=\left(1-x\right)\sqrt{3x-2}\) \(\left(x\ge\dfrac{2}{3}\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)-\left(1-x\right)\sqrt{3x-2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2+\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2+\sqrt{3x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\\sqrt{3x-2}=2-x\left(1\right)\end{matrix}\right.\)

Xét (1) ta có: \(\left\{{}\begin{matrix}2-x\ge0\\3x-2=4-4x+x^2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}2\ge x\\x^2-7x+6=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=6\left(KTM\right)\\x=1\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy nghiệm của phương trình là x=1

13 tháng 2 2022

ĐKXĐ : x \(\ge\dfrac{2}{3}\)

Ta có \(\left(x-1\right)\left(x-2\right)=\sqrt{3x-2}\left(1-x\right)\)

<=> \(\left(x-1\right)\left(x-2+\sqrt{3x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{3x-2}=2-x\end{matrix}\right.\)

Khi x - 1 = 0 <=> x = 1 (tm)

Khi \(\sqrt{3x-2}=2-x\)

<=> \(\left\{{}\begin{matrix}3x-2=x^2-4x+4\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-6\right)=0\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\\\dfrac{2}{3}\le x\le2\end{matrix}\right.\Leftrightarrow x=1\)

Vậy phương trình 1 nghiêm \(x=1\)

30 tháng 3 2022

undefinedundefined

10 tháng 6 2021

câu 2 phần 2:

\(\left\{{}\begin{matrix}4x+3y=11\\4x-y=7\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}4y=4\\4x-y=7\end{matrix}\right.< =>\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\).Vậy hệ pt có nghiệm

(x,y)=(2;1)

caau3 phần 2:

\(x^2-2x+m-1=0\)(1)

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)

để pt (1) có 2 nghiệm x1,x2<=>\(\Delta'\ge0< =>2-m\ge0< =>m\le2\)

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2\left(1\right)\\x1.x2=m-1\left(3\right)\end{matrix}\right.\)

có: \(x1^4\)\(-x1^3=x2^4-x2^3\)

\(< =>x1^4-x2^4-x1^3+x2^3=0\)

\(< =>\left(x1^2-x2^2\right)\left(x1^2+x2^2\right)-\left(x1^3-x2^3\right)\)\(=0\)

\(< =>\left(x1-x2\right)\left(x1+x2\right)\left[\left(x1+x2\right)^2-2x1x2\right]\)\(-\left(x1-x2\right)\left(x1^2+x1x2+x^2\right)=0\)

\(< =>\)\(\left(x1-x2\right)\left[2.2^2-2\left(m-1\right)-\left(x1^2+x1x2+x2^2\right)\right]=0\)

\(< =>.\left(x1-x2\right)\left[8-2m+2-\left(x1+x2\right)^2+x1x2\right]=0\)

<=>\(\left(x1-x2\right)\left[10-2m-4+m-1\right]=0\)

\(< =>\left(x1-x2\right)\left(5-m\right)=0\)

\(=>\left[{}\begin{matrix}x1-x2=0\\5-m=0\end{matrix}\right.< =>\left[{}\begin{matrix}x1=x2\left(2\right)\\m=5\left(loai\right)\end{matrix}\right.\)

thế(2) vào(1)=>\(x1=x2=1\left(4\right)\)

thế (4) vào (3)=>\(m-1=1=>m=2\left(TM\right)\)

vậy m=2 thì....

a: AB/AC=5/6

=>HB/HC=25/36

=>HB/25=HC/36=k

=>HB=25k; HC=36k

AH^2=HB*HC

=>25k*36k=30^2

=>900k^2=900

=>k=1

=>x=25cm; y=25cm

b: AB/AC=3/4

=>HB/HC=9/16

=>x/y=9/16

=>x/9=y/16=(x+y)/(9+16)=125/25=5

=>x=45cm; y=80cm

7:

a: \(P=\left(1:\dfrac{x-x+1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{x-1-2}{\sqrt{x-1}-\sqrt{2}}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\right)\)\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)

\(=-\dfrac{\left(\sqrt{x}-\sqrt{2}\right)}{\sqrt{x}}\)

b: Khi x=3-2căn 2 thì \(P=-\dfrac{\sqrt{2}-1-\sqrt{2}}{\sqrt{2}-1}=\dfrac{1}{\sqrt{2}-1}=\sqrt{2}+1\)

 

bài 2: 

b: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4,8\left(cm\right)\\BH=3,6\left(cm\right)\\CH=6,4\left(cm\right)\end{matrix}\right.\)

Câu 2: 

a: \(\Leftrightarrow\left(x^2+2x-15\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)\left(x+1\right)^2=0\)

hay \(x\in\left\{-5;-1;3\right\}\)

b: \(\Leftrightarrow\left(x^2-3x\right)^2-4x\left(x-3\right)+2x\left(x-3\right)-8=0\)

\(\Leftrightarrow x^2\left(x-3\right)^2-4x\left(x-3\right)+2x\left(x-3\right)-8=0\)

\(\Leftrightarrow x\left(x-3\right)\left(x^2-3x-4\right)+2\left(x^2-3x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+1\right)\left(x-1\right)\left(x-2\right)=0\)

hay \(x\in\left\{4;-1;1;2\right\}\)

c: \(\Leftrightarrow\left(x^2+x\right)^2+3\left(x^2+x\right)=0\)

=>x(x+1)=0

=>x=0 hoặc x=-1

 

21 tháng 1 2022

\(a,\left(x^2+2x\right)^2-14\left(x^2+2x\right)-15=0\\ \Rightarrow\left[\left(x^2+2x\right)^2-15\left(x^2+2x\right)\right]+\left[\left(x^2+2x\right)-15\right]=0\\ \Rightarrow\left(x^2+2x\right)\left(x^2+2x-15\right)+\left(x^2+2x-15\right)=0\\ \Rightarrow\left(x^2+2x-15\right)\left(x^2+2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2+2x-15=0\\x^2+2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-5\\x=-1\end{matrix}\right.\)