Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\left(đk:x\ge2;y\ge3;z\ge5\right)\)
\(< =>\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)
\(< =>\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Do \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)
Cộng theo vế ta được \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2\ge0\)
Mà \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x = 3 ; y = 7 ; z = 14 ( tmđk )
Vậy ...
\(-7xy\sqrt{\frac{16}{xy}}\)
\(-7xy\frac{4\sqrt{xy}}{xy}\)
\(-28\sqrt{xy}\)
\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)
\(A=\sqrt{9.3}-2\sqrt{3.4}-\sqrt{25.3}\)
\(A=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)
\(A=-6\sqrt{3}\)
\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)
\(B=\frac{3-\sqrt{7}+3\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(B=\frac{6}{9-7}=3\)
\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)
\(=\sqrt{3^2.3}-2.\sqrt{2^2.3}-\sqrt{5^2.3}\)
\(=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)
\(=-6\sqrt{3}\)
vậy \(A=-6\sqrt{3}\)
\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)
\(B=\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(B=\frac{3-\sqrt{7}+3+\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(B=\frac{6}{9-7}\)
\(B=\frac{6}{2}\)
\(B=3\)
vậy \(B=3\)
\(2.\)
\(a,1=\sqrt{1}\)
\(1< 2< =>\sqrt{1}< \sqrt{2}< =>1< \sqrt{2}\)
\(b,2-\sqrt{2}-1\)
\(1-\sqrt{2}\)
mà \(1< \sqrt{2}< =>1-\sqrt{2}< 0\)
\(2< \sqrt{2}+1\)
c, 7 và \(5\sqrt{2}\)
\(7=\sqrt{49}\)
\(5\sqrt{2}=\sqrt{50}< =>\sqrt{49}< \sqrt{50}\)
\(< =>7< 5\sqrt{2}\)
d, 7 và \(\sqrt{47}\)
\(7=\sqrt{49}< =>\sqrt{49}>\sqrt{47}\)
\(7>\sqrt{47}\)
e, 1 và \(\sqrt{3}-1\)
\(1-\sqrt{3}+1=2-\sqrt{3}=\sqrt{4}-\sqrt{3}>0\)
\(1>\sqrt{3}-1\)
f,\(2\sqrt{31}\)và \(10\)
\(2\sqrt{31}=\sqrt{124}\)
\(10=\sqrt{100}< =>\sqrt{124}>\sqrt{100}\)
\(2\sqrt{31}>10\)
\(3.A=\sqrt{1-4a+4a^2}-2a\)
\(A=\sqrt{\left(1-2a\right)^2}-2a\)
\(A=\left|1-2a\right|-2a\)
kết hợp với ĐKXĐ \(x\ge0,5\)
\(A=2a-1-2a=-1\)
\(b,B=\sqrt{x-2+2\sqrt{x-3}}\)
\(B=\sqrt{x-3+2\sqrt{x-3}+1}\)
\(B=\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(B=\left|\sqrt{x-1}+1\right|\)
kết hợp đkxđ
\(B=\sqrt{x-1}+1\)
\(C=\sqrt{x-2\sqrt{x}+1}+\sqrt{x+2\sqrt{x}+1}\)
\(C=\sqrt{\left(\sqrt{x}-1\right)^2}+\sqrt{\left(\sqrt{x}+1\right)^2}\)
\(C=\left|\sqrt{x}-1\right|+\left|\sqrt{x}+1\right|\)
\(TH1:0\le x\le1\)
\(C=1-\sqrt{x}+\sqrt{x}+1=2\)
\(TH2:x>1\)
\(C=\sqrt{x}-1+\sqrt{x}+1=2\sqrt{x}\)
\(D=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(D=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(D=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
kết hợp với đkxđ
\(TH1:1\le x\le4\)
\(D=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)
\(TH2:x>4\)
\(D=\sqrt{x-1}+1+\sqrt{x-1}+1=2\sqrt{x-1}\)