Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=19\frac{1}{4}+\frac{1}{2}\times2\frac{1}{3}+5,75-\frac{1}{6}+74\)
MK GHI ĐẦY ĐỦ RA RÙI, BẠN TỰ BẤM MÁY TÍNH LÀM NHA ( MÌNH LƯỜI )
\(A=19\frac{1}{4}+\frac{1}{2}\times2\frac{1}{3}+5,75-\frac{1}{6}+74\)
\(A=\frac{77}{4}+\frac{1}{2}\times\frac{7}{3}+\frac{23}{4}-\frac{1}{6}+74\)
\(A=\frac{77}{4}+\frac{7}{6}+\frac{23}{4}-\frac{1}{6}+74\)
\(A=(\frac{77}{4}+\frac{23}{4})+(\frac{7}{6}-\frac{1}{6})+74\)
\(A=25+1+74\)
\(A=26+74\)
\(A=100\)
a, {a}; {b}; {c} ; {d}
{a;b}; {a;c}; {a;d}; {b;c}; {b;d}; {c;d}
{a;b;c}; {a;b;d}; {a;c;d}; {b;c;d}
b, Số tập con: 24= 16(tập con)
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
\(\frac{x}{3\frac{1}{2}.2\frac{2}{3}}=\frac{9}{56}\Rightarrow\frac{x}{\frac{7}{2}.\frac{8}{3}}=\frac{9}{56}\Rightarrow x=\frac{9}{56}.\frac{28}{3}=\frac{3}{2}\)
\(x:\left(3\frac{1}{2}.2\frac{2}{3}\right)=\frac{9}{56}\)
\(x:\left(\frac{7}{2}.\frac{8}{3}\right)=\frac{9}{56}\)
\(x:\left(\frac{7.4}{3}\right)=\frac{9}{56}\)
\(x.\frac{3}{28}=\frac{9}{56}\)
\(x=\frac{9}{56}.\frac{28}{3}=\frac{3}{2}\)
Vậy \(x=\frac{3}{2}\)
Ta có A=\(\frac{1}{5}\)+\(\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)\)+\(\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)\)
Ta lại có: \(\frac{1}{5}=\frac{1}{5}\)
\(\frac{1}{13}=\frac{1}{13},\frac{1}{13}>\frac{1}{14},\frac{1}{13}>\frac{1}{15}\)
\(\frac{1}{61}=\frac{1}{61},\frac{1}{61}>\frac{1}{62},\frac{1}{61}>\frac{1}{63}\)
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\)<\(\frac{1}{5}+\frac{1}{13}+\frac{1}{13}+\frac{1}{13}+\frac{1}{61}+\frac{1}{61}+\frac{1}{61}\)
A<\(\frac{1}{5}+\frac{1}{13}x3+\frac{1}{61}x3\)
A<\(\frac{1}{5}+\frac{3}{13}+\frac{3}{61}=0,4799...< \frac{1}{2}\)
Vậy A<\(\frac{1}{2}\)
Mình viết phân số lâu lắm đó tk cho mình nha. Mình cảm ơn nhiều ^-^
B=\(\left[\left(\frac{1}{3}+\frac{1}{4}\right)x\frac{12}{19}+\frac{12}{19}\right]:\frac{4}{5}-\frac{1}{4}+2012\)
B=\(\left(\frac{7}{12}x\frac{12}{19}+\frac{12}{19}\right):\frac{4}{5}-\frac{1}{4}+2012\)
B=\(\left(\frac{7}{19}+\frac{12}{19}\right):\frac{4}{5}-\frac{1}{4}+2012\)
B=\(\frac{5}{4}-\frac{1}{4}+2012\)
B=1+2012
B=2013
\(B=[\left(\frac{1}{3}+\frac{1}{4}\right)\times\frac{12}{19}+\frac{12}{19}]:\frac{4}{5}-\frac{1}{4}+2012\)
\(B=[\frac{7}{12}\times\frac{12}{19}+\frac{12}{19}]:\frac{4}{5}-\frac{1}{4}+2012\)
\(B=[\frac{7}{19}+\frac{12}{19}]:\frac{4}{5}-\frac{1}{4}+2012\)
\(B=1:\frac{4}{5}-\frac{1}{4}+2012\)
\(B=\frac{5}{4}-\frac{1}{4}+2012\)
\(B=1+2012\)
\(B=2013\)
Ta có: M=\(\frac{1}{1.2.3}\) +\(\frac{1}{2.3.4}\) +\(\frac{1}{3.4.5}\) +...+\(\frac{1}{100.101.102}\)
M=2.(\(\frac{1}{1.2.3}\) +\(\frac{1}{2.3.4}\) +\(\frac{1}{3.4.5}\) +...+\(\frac{1}{100.101.102}\) ).\(\frac{1}{2}\)
M=(\(\frac{2}{1.2.3}\) +\(\frac{2}{2.3.4}\) +\(\frac{2}{3.4.5}\) +...+\(\frac{2}{100.101.102}\) ).\(\frac{1}{2}\)
M=(\(\frac{1}{1.2}\) -\(\frac{1}{2.3}\) +\(\frac{1}{2.3}\) -\(\frac{1}{3.4}\) +\(\frac{1}{3.4}\) -\(\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\) ).\(\frac{1}{2}\)
M=( \(\frac{1}{1.2}-\frac{1}{101.102}\)).\(\frac{1}{2}\)
Mà \(\frac{1}{1.2}-\frac{1}{101.102}<1\)
Và \(\frac{1}{2}<1\)
\(=>\) (\(\frac{1}{1.2}-\frac{1}{101.102}\) ) .\(\frac{1}{2}\) \(<1\)
\(=>\) M <1
Tính ra M to lắm bạn ơi so sánh với 1 đời nào
\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{100.101.102}\)
\(\Rightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\)
\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{100.101}-\frac{1}{101.102}\)
\(\Rightarrow2M=\frac{1}{1.2}-\frac{1}{101.102}\)
\(\Rightarrow M=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{101.102}\right)=1-\frac{1}{202.102}< 1\)
Vậy M < 1