K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

A B C H F E

                                         Giải

b, Áp dụng hệ thức lượng vào trong tam giác vuông AHB 

ta có : \(AH^2=AE.AB\left(1\right)\)

ÁP dụng hệ thức lượng vào trong tam giác vuông AHC

Ta có : \(AH^2=AF.AC\left(2\right)\)

Từ (1) , (2) \(\Rightarrow AB.AE=AC.AF\left(đpcm\right)\)

4 tháng 3 2020

Đổi: 3h 20p = \(\frac{10}{3}\)h

Gọi thời gian tổ a; tổ b đã làm lần lượt là x ; y. ( 0 < x < 20; 0< y <15 ; h )

=> y - x =\(\frac{10}{3}\)(1)

+) Tổ a làm 1 mình trong 20 h thì xong công việc

=> 1 h tổ a làm được: \(\frac{1}{20}\) ( công việc)

+) Tổ b làm 1 mình trong 15h thì xong công việc

=> 1h tổ b làm được : \(\frac{1}{15}\)( công việc )

Theo bài ra : \(\frac{1}{20}.x+\frac{1}{15}.y=1\)(2)

Từ (1); (2) => x = \(\frac{20}{3}\)(h) ; y = 10 (h) ( thỏa mãn)

23 tháng 6 2023

loading...  giúp ae ơi

23 tháng 6 2023

50k

 

18 tháng 8 2017

Mình đang cần gấp mọi người giải luôn giúp mình nhé. Thanks

31 tháng 1 2019

d/ Gọi K, P lần lượt là hình chiếu của H,O lên AI

Xét tam giác AHF ta có :

O là trung điểm AF

I là trung điểm BC

=> OI là đường trung bình của tam giác AHF

=>\(\hept{\begin{cases}OI=\frac{1}{2}AH\\OI//AH\end{cases}}\)

Xét tam giác AHI ta có

\(\hept{\begin{cases}S_{AHI}=\frac{1}{2}HK.AI\\\sin H\widehat{A}I=\frac{HK}{AH}=>HK=AH.\sin H\widehat{AI}\end{cases}}\)(tam giác AHK vuông tại K )

=>\(S_{AHI}=\frac{1}{2}.AH.AI.sinH\widehat{A}I\)

Chứng minh tương tự cho tam giác AOI =>\(S_{AOI}=\frac{1}{2}.IO.IA.sinA\widehat{I}O\)

Ta có :

\(S_{AHI}=2.S_{AOI}\)

\(< =>\frac{1}{2}AH.AI.sinH\widehat{A}I=2.\frac{1}{2}IA.IO.sinA\widehat{IO}\)( Vì góc HAI = góc AIO do OI//AH nên sin của chúng = nhau)

\(< =>\frac{1}{2}AH=IO\left(LĐ\right)\)

Cái hệ thức này lớp 10 sẽ học nha bạn

31 tháng 1 2019

thanks bạn nhe