Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
b, Áp dụng hệ thức lượng vào trong tam giác vuông AHB
ta có : \(AH^2=AE.AB\left(1\right)\)
ÁP dụng hệ thức lượng vào trong tam giác vuông AHC
Ta có : \(AH^2=AF.AC\left(2\right)\)
Từ (1) , (2) \(\Rightarrow AB.AE=AC.AF\left(đpcm\right)\)
Đổi: 3h 20p = \(\frac{10}{3}\)h
Gọi thời gian tổ a; tổ b đã làm lần lượt là x ; y. ( 0 < x < 20; 0< y <15 ; h )
=> y - x =\(\frac{10}{3}\)(1)
+) Tổ a làm 1 mình trong 20 h thì xong công việc
=> 1 h tổ a làm được: \(\frac{1}{20}\) ( công việc)
+) Tổ b làm 1 mình trong 15h thì xong công việc
=> 1h tổ b làm được : \(\frac{1}{15}\)( công việc )
Theo bài ra : \(\frac{1}{20}.x+\frac{1}{15}.y=1\)(2)
Từ (1); (2) => x = \(\frac{20}{3}\)(h) ; y = 10 (h) ( thỏa mãn)
d/ Gọi K, P lần lượt là hình chiếu của H,O lên AI
Xét tam giác AHF ta có :
O là trung điểm AF
I là trung điểm BC
=> OI là đường trung bình của tam giác AHF
=>\(\hept{\begin{cases}OI=\frac{1}{2}AH\\OI//AH\end{cases}}\)
Xét tam giác AHI ta có
\(\hept{\begin{cases}S_{AHI}=\frac{1}{2}HK.AI\\\sin H\widehat{A}I=\frac{HK}{AH}=>HK=AH.\sin H\widehat{AI}\end{cases}}\)(tam giác AHK vuông tại K )
=>\(S_{AHI}=\frac{1}{2}.AH.AI.sinH\widehat{A}I\)
Chứng minh tương tự cho tam giác AOI =>\(S_{AOI}=\frac{1}{2}.IO.IA.sinA\widehat{I}O\)
Ta có :
\(S_{AHI}=2.S_{AOI}\)
\(< =>\frac{1}{2}AH.AI.sinH\widehat{A}I=2.\frac{1}{2}IA.IO.sinA\widehat{IO}\)( Vì góc HAI = góc AIO do OI//AH nên sin của chúng = nhau)
\(< =>\frac{1}{2}AH=IO\left(LĐ\right)\)
Cái hệ thức này lớp 10 sẽ học nha bạn
bài nào???
đâu tui hok thấy ??????
hay bạn quên chưa chat