Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
\(m=4kg\)
\(t=2,5s\)
____________________________
\(\Delta p=?kg.m/s\)
Giải:
Rơi tự do ko vận tốc đầu nên v1=0
Vận tốc ở tg 2s:
\(v_2=g.t=10.2,5=25\left(m/s\right)\)
Độ biến thiên động lượng của vật:
\(\Delta p=p_2-p_1=m.\left(v_2-v_1\right)=4.\left(25-0\right)=100\left(kg.m/s\right)\)
Vậy ...
Độ cứng: \(k=m.\omega^2=0,1.(10\pi)^2=100(N/m)\)
Thế năng: \(W_t=\dfrac{1}{2}k.x^2=\dfrac{1}{2}.100.0,04^2=0,08(J)\)
Cơ năng: \(W=\dfrac{1}{2}k.A^2=\dfrac{1}{2}.100.0,08^2=0,32(J)\)
Động năng: \(W_đ=W-W_t=0,24(J)\)
Vì vật chuyển động đều
\(\Rightarrow\overrightarrow{F}+\overrightarrow{N}+\overrightarrow{P}+\overrightarrow{F_{ms}}=\overrightarrow{0}\)
Chọn trục toạ độ có trục hoành hướng sang phải, trục tung hướng lên
\(\Rightarrow\left\{{}\begin{matrix}Ox:F.\cos\alpha-F_{ms}=0\\Oy:F.\sin\alpha+N-P=0\end{matrix}\right.\)
\(\Rightarrow F.\cos\alpha-\mu.\left(P-F.\sin\alpha\right)=0\)
\(\Leftrightarrow120.\cos60-\mu.\left(200-120.\sin60\right)=0\)
=> \(\mu=...\)
Tìm gia tốc trong trường hợp alpha= 300 thì lúc này vật chuyển động biến đổi đều nên có gia tốc, tức là \(\overrightarrow{F}+\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a}\)
Cậu chiếu lên trục toạ độ rồi phân tích, bt hệ số ma sát rồi thì tìm a ez
Gia tốc do lực F1 gây ra là: \(a_1=\dfrac{\Delta v}{\Delta t} = \dfrac{5-0}{0,5} =10(m/s^2)\)
Khi tác dụng lực F2 = 2F1 thì gia tốc: \(a_2=2.a_1=2.10=20(m/s^2)\)
Vận tốc ở cuối thời điểm viên bi khi tiếp tục tác dụng lực F2 là:
\(v=v_0+a_2.t = 5 + 20.1,5 = 35(m/s)\)
Ta có : \(T=\frac{2\pi}{\omega}\)
\(\omega=\frac{\Delta\alpha}{\Delta t}=\frac{\pi}{2\Delta t}\)
\(\rightarrow T=\frac{2\pi}{\frac{\pi}{2\Delta t}}=\frac{2\pi.2\Delta t}{\pi}=4\Delta t\)
=> \(\Delta t=\frac{T}{4}\)
Chọn D.