Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Giả sử
\(8-\sqrt{2}>4+\sqrt{5}\)
\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)
\(\Leftrightarrow16>7+2\sqrt{10}\)
\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)
Vậy \(8-\sqrt{2}>4+\sqrt{5}\)
Bài 3: Ta có
\(x^2+2015x-2014=2\sqrt{2017x-2016}\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)
\(\Leftrightarrow x=1\)
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
Câu b: Tam giác AHB vuông tại H, đường cao AH
=> AD.BD=DH2
Tương tự: AE.EC=HE2
=> AD.BD+AE.EC=DH2+HE2
=DE2 (Pytago)
=AH2 (ADHE là hình chữ nhật vì có 3 góc vuông)
Ta có ; \(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
=> D là điểm chính giữa cung BC
=> DO vuông góc với BC tại trung điểm H của BC
lại có: \(\Delta BDM~\Delta BCF\Rightarrow\frac{BD}{BC}=\frac{DM}{CF}\Rightarrow\frac{BD}{2BH}=\frac{\frac{1}{2}DA}{CF}\Rightarrow\frac{BD}{BH}=\frac{DA}{CF}\)
Mà \(\widehat{D_1}=\widehat{C_2}\)( bẹn chứng minh ở phần a nhé)
\(\Rightarrow\Delta BDA~\Delta HCF\left(c.g.c\right)\Rightarrow\widehat{F_1}=\widehat{A_1}\)(2 góc tương ứng)
Mà A1=A2(gt) và A2=E1(cùng chắn 1 cung DC).
F1=E1=> tam giác EFHC nội tiếp