Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do M, N là trung điểm của AB và AC nên MN là đường trung bình tam giác ABC.
Suy ra MN//BC, hay ta có: \(\widehat{MDB}=\widehat{DBP}\) (Hai góc so le trong)
Mà \(\widehat{MBD}=\widehat{DBP}\) (Do BD là phân giác)
\(\Rightarrow\widehat{MDB}=\widehat{MBD}\). Vậy tam giác MBD cân tại M hau MB = MD.
Xét tam giác ADB có MD là trung tuyến mà bằng một nửa cạnh tương ứng nên tam giác ADB vuông tại D.
Vậy \(BD\perp AP\)
Hoàn toàn tương tự \(BE\perp AQ\)
b) Xét tam giác ABP có M là trung điểm AB, MD // BP nên MD là đường trung bình tam giác ABP.
Vậy nên BP = 2MD . Tương tự BQ = 2EM
Mà EM = MD ( = MB)
Vậy nên BP = BQ hay B là trung điểm QP.
c) Do BE, BD là các tia phân giác trong và ngoài của một đỉnh trong tam giác nên EB vuông góc BD
Vậy tứ giác EADB có 3 góc vuông, suy ra EADB là hình chữ nhật.
\(\Rightarrow AB=ED\)
cô huyền ơi làm giúp em bài này với , : https://olm.vn/hoi-dap/question/1134332.html
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân