Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT AM-GM ta có:
\(x+y\ge2\sqrt{xy}\)
\(\Rightarrow\)\(\frac{x+y}{2}\ge\sqrt{xy}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
b) Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}}{\sqrt{y}}.\frac{\sqrt{y}}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
b/ \(a-\frac{1}{a}=\sqrt{a}+\frac{1}{\sqrt{a}}\)
\(\Leftrightarrow\sqrt{a}-\frac{1}{\sqrt{a}}=1\)
\(\Leftrightarrow a+\frac{1}{a}-2=1\)
\(\Leftrightarrow a+\frac{1}{a}=3\)
\(\Leftrightarrow a^2+\frac{1}{a^2}+2=9\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2=5\)
\(\Leftrightarrow a-\frac{1}{a}=\sqrt{5}\)
a/ Ta có: \(x=\frac{1-5y}{2}\) thê vô ta được
\(x^2+y^2=y^2+\left(\frac{1-5y}{2}\right)^2=\frac{29y^2-10y+1}{4}\)
\(=\frac{1}{116}\left(29^2y^2-290y+29\right)=\frac{1}{116}\left[\left(29^2y^2-2.29y.5+25\right)+4\right]\)
\(=\frac{1}{116}\left[\left(29y-5\right)^2+4\right]\ge\frac{4}{116}=\frac{1}{29}\)
2. Có : 1/x + 1/y + 1/z = 0
=> 1 + x/y + x/z = 0 => x/y + x/z = -1
Tương tự : y/x + y/z = -1 ; z/x + z/y = -1
=> x/y + x/z + y/x + y/z + z/x + z/y = -3
Lại có : 1/x+1/y+1/z = 0
<=> xy+yz+zx/xyz = 0
<=> xy+yz+zx = 0
Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)
= xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z
= xy/z^2+xz/y^2+xy/z^2-3
=> xy/z^2+xz/y^2+xy/z^2 = 3
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô si ta có:
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a.4bc=16abc\)
d)
Đặt \(\frac{1}{x-1}=a;\frac{1}{y+2}=b\) ta được
\(\left\{{}\begin{matrix}8a+15b=1\\a+b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{179}{7}\\b=\frac{-95}{7}\end{matrix}\right.\)
thay lại ta đc
\(\frac{1}{x-1}=\frac{179}{7}\Leftrightarrow179x=186\Rightarrow x=\frac{186}{179}\)
\(\frac{1}{y+2}=\frac{-95}{7}\Leftrightarrow-95y=197\Rightarrow y=\frac{-195}{7}\)
ý d mk ko bt là đúng hay ko đâu
ý b dễ nên mk giải ý c và d thôi nha
\(\left\{{}\begin{matrix}\frac{3}{5x}+\frac{1}{y}=\frac{1}{10}\\\frac{3}{4x}+\frac{3}{4y}=\frac{1}{12}\end{matrix}\right.\) Đặt \(\frac{3}{x}=a:\frac{1}{y}=b\) ta đcc
\(\left\{{}\begin{matrix}\frac{a}{5}+b=\frac{1}{10}\\\frac{a}{4}+\frac{3b}{4}=\frac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+10=1\\3a+9b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{12}\\b=\frac{1}{12}\end{matrix}\right.\)
thay lại ta được
\(\frac{3}{x}=\frac{1}{12}\Rightarrow x=36\)
\(\frac{1}{y}=\frac{1}{12}\Rightarrow y=12\)
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)