K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bài 11:
Gọi F là giao điểm của AH và DE
Xét ΔABC có:
D là trung điểm của AB( gt)
E là trung điểm của AC (gt)
=> DE là đường trung bình của tam giác ABC
=> DE//BC
Mà BC⊥AH( AH là đường cao của ΔABC)
=>DE⊥AH tại F( từ vuông góc đến song song)
Xét ΔABH có:
DF//BH( do DE//BC, mà \(F\in DE,H\in BC\) => DF//BH)
Mà D là trung điểm của AB( gt)
=> F là trung điểm của AH
Ta có: F là trung điểm của AH( cmt)
AH⊥DE (cmt)
=> DE là đường trung trực của AH
b) Ta có: DE//BC( DE là đường trung bình của ΔABC)
Mà \(H,K\in BC\)
=> DE//HK => Tứ giác DEKH là hình thang\(\left(1\right)\)
Xét ΔAHC vuông tại H có:
HE là đường trung tuyến ứng với cạnh huyền( E là trung điểm của AC)
=> \(HE=\dfrac{1}{2}AC\)
Xét ΔABC có:
D, K lần lượt là trung điểm của AB,BC( gt)
=> DK là đường trung bình của ΔABC \(\Rightarrow DK=\dfrac{1}{2}AC\)
Mà \(HE=\dfrac{1}{2}AC\left(cmt\right)\Rightarrow HE=DK\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\Rightarrow\) Tứ giác DEKH là hình thang cân
a: Ta có: ΔAHB vuông tại H
mà HD là đường trung tuyến ứng với cạnh huyền AB
nên HD=AD=DB
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên HE=AE=CE
Ta có: HA=AD
nên D nằm trên đường trung trực của AH\(\left(1\right)\)
Ta có: EH=EA
nên E nằm trên đường trung trực của HA\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra DE là đường trung trực của AH
b: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔBAC
Suy ra: DE//CB
hay DE//HK
Xét ΔABC có
D là trung điểm của AB
K là trung điểm của CB
Do đó: DK là đường trung bình của ΔABC
Suy ra: \(DK=\dfrac{AC}{2}\left(3\right)\)
Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AC
nên \(HE=\dfrac{AC}{2}\left(4\right)\)
Từ \(\left(3\right),\left(4\right)\) suy ra DK=HE
Xét tứ giác DEKH có DE//HK
nên DEKH là hình thang
Hình thang DEKH có DK=HE
nên DEKH là hình thang cân