Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x|+|y|=2
nên x=1;y=1
=>x;y\(\in\){-1;1}
nên x=0 y=2
=> x=0 và y\(\in\){-2;2}
nên x=2 y=0
=>x\(\in\){-2;2} y=0
nếu x,y thuộc Z
suy ra phương trình tương đương vs y(4-x)-3(4-x)=15-12
=> (4-x)(y-3)=3
ta có 4-x=1 và y-3=3 =>x=3 và y=0
...........
(1+2x)(y-3) = 10
=> 1+2x;y-3 \(\in\) Ư(10) = {1,2,5,10}
Ta có bảng :
1+2x | 1 | 2 | 5 | 10 |
y-3 | 10 | 5 | 2 | 1 |
x | 0 | 1/2 (loại) | 2 | 9/2 (loại) |
y | 13 | 8 | 5 | 4 |
Vậy ta có 2 cặp x,y thõa mãn (x=0,y=13);(x=2,y=5)
Ta có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}.5\)
\(\Rightarrow S< 1,5\left(1\right)\)
Lại có :
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}.5\)
\(\Rightarrow S>1\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow1< S< 1,5\)
\(\Rightarrow S\)ko phải là STN
xy - x + 2y = 3
x(y - 1) + 2y - 2 = 3 - 2
x(y - 1) + 2(y - 1) = 1
<=> (x + 2)(y - 1) = 1
=> (x + 2)(y - 1) = 1.1 = ( - 1)(- 1)
Nếu x + 2 = 1 thì y - 1 = 1 => x = - 1 thì y = 2
Nếu x + 2 = - 1 thì y - 1 = - 1 => x = - 3 thì y = 0
Vậy x = - 1 thì y = 2; x = - 3 thì y = 0
\(x\left(y-1\right)+2y-2=3-2=1\)
\(\left(y-1\right)\left(x+2\right)=1\)
y-1={-1,1)=> y={0,2}
x+2={-1,1}=>x={-3,-1}
(x+3)(y-1) = 5
=> x+3;y-1 \(\in\) Ư(5) = {1,5}
\(\Rightarrow\hept{\begin{cases}x+3=1\\y-1=5\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=6\end{cases}}\) (loại)
\(\Rightarrow\hept{\begin{cases}x+3=5\\y-1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}\)
Vậy x=2 và y=2
\(xy=x+y\)
\(\Rightarrow x+y-xy=0\)
\(\Rightarrow\left(x-xy\right)+y-1=-1\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-1\)
\(\Leftrightarrow\left(1-y\right)\left(x-1\right)=-1\)
\(\Rightarrow\left(1-y\right)\)và \(\left(x-1\right)\inƯ\left(-1\right)\)
Xét các trường hợp:
TH1
\(\hept{\begin{cases}1-y=1\\x-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=0\end{cases}}}\)
TH2:
\(\hept{\begin{cases}1-y=-1\\x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=2\end{cases}}\)
Vậy cặp số x,y cần tìm là\(\orbr{\begin{cases}\hept{\begin{cases}x=0\\y=0\end{cases}}\\\hept{\begin{cases}x=2\\y=2\end{cases}}\end{cases}}\)
\(a,xy=x+y\)
\(\Leftrightarrow xy-x-y=0\)
\(\Leftrightarrow xy-x-y+1=1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
\(\Leftrightarrow1⋮x-1,y-1\left(x-1,y-1\inℤ\right)\)
\(\Leftrightarrow x-1,y-1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Bn tự xét để tìm x;y nhé
Ta có: xy - x + y = 6
x (y - 1) + y = 6
x (y - 1) + y - 1 = 6 - 1
x (y - 1) + (y - 1) = 5
(x + 1) (y - 1) = 5
Mà x, y thuộc Z nên x+1 thuộc Ư(5)
Nên x + 1 thuộc {-5; -1; 1; 5}
Ta có bảng sau:
Vậy (x, y) thuộc { (-6; 0) ; (-2; 4) ; (0; 6) ; (4; 2) }
ta có xy-x+y=6
suy ra x(y-1)+y=6
suy ra x(y-1)+y-1=5
suy ra x(y-1)+(y-1)=5
suy ra (y-1).(x+1)=1.5=(-1).(-5)=5.1=(-5).(-1)
TH1{ y-1=1
{x+1=5
suy ra y=2;x=4
ta có thêm 3 trường hợp nữa làm tương tự trường hợp 1