Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tập hợp ước chung của 50 và 60
50=2 x 52 ; 60 = 22 x 3 x 5
=> ƯCLN(50;60)= 2 x 5 = 10
ƯC(50;60)=Ư(10)={1;2;5;10}
_________
Tìm tập hợp bội chung của 18 và 24 có 2 chữ số
18=2 x 32 ; 24=23 x 3
=> BCNN(18;24)=23 x 32 = 72
B(72)={0;72;144;216;288;360;432;...}
Vì tìm bội chung của 18 và 24 có 2 chữ số => BC(18;24)(có 2 chữ số)= {72}
Để tìm tập hợp ước chung của hai số, ta cần liệt kê các ước của từng số và sau đó tìm các ước chung của hai số đó.
Tập hợp ước chung của 50 và 60:
Các ước của 50: 1, 2, 5, 10, 25, 50
Các ước của 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60
Tập hợp ước chung của 50 và 60 là: {1, 2, 5, 10}
Tập hợp bội chung của 18 và 24 có 2 chữ số:
Các bội của 18: 18, 36, 54, 72, 90, …
Các bội của 24: 24, 48, 72, 96, …
Tập hợp bội chung của 18 và 24 có 2 chữ số là: {72}
Ta có : |x + 5| - (x + 5) = 0
<=> |x + 5| = (x + 5)
<=> x + 5 = x + 5 ( x bằng bất kì)
-x + 5 = x + 5
<=> -x - x = 5 - 5
=> -2x = 0
=> x = 0
ai có thể trả lời cho mình phần b ko rồi mình sẽ k
Ta có (6a + 1) chia hết cho (3a - 1).
=>(6a + 1) chia hết cho (3a - 1) + (3a - 1)
=>(6a +1) chia hết cho (6a - 2)
=>(6a + 1 + 2 - 2) chia hết cho (6a - 2)
=>(6a - 2 + 3) chia hết cho (6a - 2)
=>3 chia hết cho (6a - 2)
=>(6a - 2) \(\in\)Ư(3) = (1;3)
=>a=\(\varnothing\)
Vậy a=\(\varnothing\)
đúng nhé
6a + 1 chia hết cho 3a - 1
\(\Rightarrow\) 6a - 2 + 3 chia hết cho 3a - 1
\(\Rightarrow\)2 . ( 3a - 1 ) + 3 chia hết cho 3a - 1
Mà 2 . ( 3a - 1 ) + 3 chia hết cho 3a - 1
\(\Rightarrow\) 3 chia hết cho 3a - 1
\(\Rightarrow\) 3a - 1 \(\in\) Ư(3) = { -3 ; -1 ; 1 ; 3 }
Ta có :
3a - 1 | -3 | -1 | 1 | 3 |
3a | -2 | 0 | 2 | 4 |
a | loại | 0 | loại | loại |
Vậy a = 0 .
Số bị chia: BC
Số chia: SC
Số dư: D
BC=3.SC+D(1)
BC+SC+D=50(2)
Thay (1) Vào (2)
=> (3.SC+D)+SC+D=50 => 4.SC+3+3=50 => 4.SC=44 => SC=11
Từ đó tìm nốt theo y/c đề bài
vì số tận cùng là 0 hoặc 5 nên 3 số đó là C={505;510;515}
Tham khảo nhé bn
a) A = {0; 3; 6; 9; 12; 15};
Ta thấy các số 0; 3; 6; 9; 12; 15 là các số tự nhiên chia hết cho 3 và nhỏ hơn 16 nên ta viết tập hợp A bằng cách chỉ ra tính chất đặc trưng là:
A = {x | x là số tự nhiên chia hết cho 3, x < 16}.
b) B = {5; 10; 15; 20; 25; 30};
Ta thấy các số 5; 10; 15; 20; 25; 30 là các số tự nhiên chia hết cho 5, lớn hơn 0 và nhỏ hơn 31 (hoặc ta có thể viết nhỏ hơn 32; …; 35).
Vậy ta có thể viết tập hợp B bằng các cách sau:
Cách 1:
B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 31}.
Cách 2:
B = {x | x là các số tự nhiên chia hết cho 5, 0 < x < 35}…
c) C = {10; 20; 30; 40; 50; 60; 70; 80; 90};
Ta thấy các số 10; 20; 30; 40; 50; 60; 70; 80; 90 là các số tự nhiên chia hết cho 10, lớn hơn 0 và nhỏ hơn 100 (hoặc ta có thể viết nhỏ hơn 91; …; 99).
Vậy ta có thể viết tập hợp C bằng các cách sau:
Cách 1:
C = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 91}.
Cách 2:
adC = {x | x là các số tự nhiên chia hết cho 10, 0 < x < 100}…
d) D = {1; 5; 9; 13; 17}
Ta thấy các số 1; 5; 9; 13; 17 là các số tự nhiên thỏa mãn số sau hơn số trước 4 đơn vị (hay còn gọi là hơn kém nhau 4 đơn vị) bắt đầu từ 1 và nhỏ hơn 18.
Do đó ta viết tập hợp D là:
D = {x | x là các số tự nhiên hơn kém nhau 4 đơn vị bắt đầu từ 1, x < 18}.
Gọi sbc là A; sc là B
Ta có:
A=3B+8
A+B=72
3B+8+B=72
4B+8=72
4B=72-8
4B=64
B=64:4
B=16
A=72-16
A=56
Vậy sbc là 56, sc là 16
Nếu chia hết cho 29 thì chia cho 31 dư 28 - 5 = 23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi số đó là a :
Ta có a : 29 dư 5 suy ra ( a - 5 ) : 29
Ta có a : 31 dư 28 suy ra ( a - 28 ) : 31
Khi đó a sẽ là Bội chung của 29 và 31
Phân tích thành số nguyên tố , ta có :
29 = 29 x 1
31 = 31 x 1
Thừa số chung là : 1
Thừa số riêng là : 29 và 31
Suy ra bội chung nhỏ nhất của 29 và 31 là :
1 x 29 x 31 = 899
Từ số 899 ta tìm được các bội khác bằng cách lấy 899 + 899 và tiếp tục như vậy
Ta có : { 899 ; 1798 ; 2697 ; ....... }
xy - x + 2y = 3
x(y - 1) + 2y - 2 = 3 - 2
x(y - 1) + 2(y - 1) = 1
<=> (x + 2)(y - 1) = 1
=> (x + 2)(y - 1) = 1.1 = ( - 1)(- 1)
Nếu x + 2 = 1 thì y - 1 = 1 => x = - 1 thì y = 2
Nếu x + 2 = - 1 thì y - 1 = - 1 => x = - 3 thì y = 0
Vậy x = - 1 thì y = 2; x = - 3 thì y = 0
\(x\left(y-1\right)+2y-2=3-2=1\)
\(\left(y-1\right)\left(x+2\right)=1\)
y-1={-1,1)=> y={0,2}
x+2={-1,1}=>x={-3,-1}