Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)
Do đó: x=54; y=36
c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\)
Ở nơi x=9/4-1/2 là x-9/4-1/2 nha
a. -1,5 + 2x = 2,5
<=> 2x = 2,5 + 1,5
<=> 2x = 4
<=> x = 2
b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)
<=> 9x + 45 - 3 = 8
<=> 9x = 8 + 3 - 45
<=> 9x = -34
<=> x = \(\dfrac{-34}{9}\)
a. f(\(\dfrac{-1}{2}\)) = \(4.\left(\dfrac{-1}{2}\right)^2+3.\left(\dfrac{-1}{2}\right)-2\)
= \(4.\dfrac{1}{4}-\left(\dfrac{-3}{2}\right)-\dfrac{4}{2}\)
= \(\dfrac{2}{2}+\dfrac{3}{2}-\dfrac{4}{2}\)
= \(\dfrac{1}{2}\)
Lời giải:
ĐKĐB $\Rightarrow \frac{2}{c}=\frac{a+b}{ab}\Rightarrow c(a+b)=2ab$
Khi đó:
$\frac{a}{b}-\frac{a-c}{c-b}=\frac{a(c-b)-b(a-c)}{b(c-b)}=\frac{ac-ab-ab+bc}{b(c-b)}=\frac{c(a+b)-2ab}{b(c-b)}=\frac{2ab-2ab}{b(c-b)}=0$
$\Rightarrow \frac{a}{b}=\frac{a-c}{c-b}$ (đpcm)
10³ + 2¹⁵
= 1000 + 32768
= 33768
Mà 33768 : 33 = 1023 (dư 9)
Em xem lại đề
Bài 5:
a) \(0,24\cdot-\dfrac{15}{4}=\dfrac{6}{25}\cdot-\dfrac{15}{4}=\dfrac{6\cdot-15}{25\cdot4}=-\dfrac{90}{100}=-\dfrac{9}{10}\)
b) \(4,5\cdot\dfrac{-4}{9}=\dfrac{9}{2}\cdot\dfrac{-4}{9}=\dfrac{9\cdot-4}{2\cdot9}=-\dfrac{4}{2}=-2\)
c) \(3,5\cdot-1\dfrac{2}{5}=\dfrac{7}{2}\cdot\dfrac{-7}{5}=\dfrac{7\cdot-7}{2\cdot5}=-\dfrac{49}{10}\)
Bài 6:
a) \(1\dfrac{1}{17}\cdot\left(-2\dfrac{1}{8}\right)=\dfrac{18}{17}\cdot\dfrac{-17}{8}=\dfrac{18\cdot-17}{17\cdot8}=\dfrac{-18}{8}=-\dfrac{9}{4}\)
b) \(\left(-2\dfrac{1}{3}\right)\cdot1\dfrac{1}{14}=-\dfrac{7}{3}\cdot\dfrac{15}{14}=\dfrac{-7\cdot15}{3\cdot14}=-\dfrac{5}{2}\)
c) \(1,25\cdot\left(-3\dfrac{3}{8}\right)=\dfrac{5}{4}\cdot-\dfrac{27}{8}=\dfrac{5\cdot-27}{4\cdot8}=-\dfrac{135}{32}\)
Bài 10
Do a và b tỉ lệ thuận với 7 và 9
⇒ a/7 = b/9
⇒ 3a/21 = 2b/18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3a/21 = 2b/18 = (3a - 2b)/(21 - 18) 30/3 = 10
3a/21 = 10 ⇒ a = 10.21:3 = 70
2b/18 = 10 ⇒ b = 10.18:2 = 90
Vậy a = 70; b = 90
Bài 9
Do x và y tỉ lệ thuận với 3 và 5
⇒ x/3 = y/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/3 = y/5 = (x + y)/(3 + 5) = 24/8 = 3
x/3 = 3 ⇒ x = 3.3 = 9
y/5 = 3 ⇒ y = 5.3 = 15
Vậy x = 9; y = 15