K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

a) \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\left(x>0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=x-\sqrt{x}+1\)

b) \(P=x-\sqrt{x}+1=\left(\sqrt{x}\right)^2-2.\sqrt{x}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow P_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{4}\)

c) \(Q=\dfrac{2\sqrt{x}}{P}=\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}\)

Ta có: \(\left\{{}\begin{matrix}2\sqrt{x}>0\left(x>0\right)\\x+\sqrt{x}+1>0\end{matrix}\right.\Rightarrow Q>0\)

Lại có: \(3x-5\sqrt{x}+3=3\left(\left(\sqrt{x}\right)^2-2.\sqrt{x}.\dfrac{5}{6}+\left(\dfrac{5}{6}\right)^2\right)+\dfrac{11}{12}\)

\(=3\left(\sqrt{x}-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>0\)

\(\Rightarrow3x-5\sqrt{x}+3>0\Rightarrow3x-3\sqrt{x}+3>2\sqrt{x}\Rightarrow3\left(x-\sqrt{x}+1\right)>2\sqrt{x}\)

\(\Rightarrow3>\dfrac{2\sqrt{x}}{x-\sqrt{x}+1}\Rightarrow Q< 3\Rightarrow0< Q< 3\)

mà \(Q\in Z\Rightarrow Q\in\left\{1;2\right\}\)

Từ\(Q\) tính ta x thôi

 

 

15 tháng 7 2021

a, \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)ĐK : \(x>0;x\ne1\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=x-\sqrt{x}-2\sqrt{x}-2+2\sqrt{x}+2\)

\(=x-\sqrt{x}\)

b, Ta có : \(x-\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu ''='' xảy ra khi \(x=\dfrac{1}{4}\)

Vậy GTNN P là -1/4 khi x = 1/4 

c, Ta có : \(G=\dfrac{2\sqrt{x}}{P}\Rightarrow G=\dfrac{2\sqrt{x}}{x-\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-1\)1-12-2
\(\sqrt{x}\)203-1
x40 ( loại ) 9loại

 

20 tháng 11 2021

\(AB=\tan C\cdot AC=\tan40^0\cdot100\approx84\left(m\right)\)

16 tháng 7 2023

loading...

loading...

loading...

16 tháng 7 2023

sao lại như thế này hả bn

29 tháng 10 2023

a: \(\dfrac{4\sqrt{6}-2\sqrt{10}}{2\sqrt{2}}+\dfrac{4}{\sqrt{3}-\sqrt{5}}+3\sqrt{6-2\sqrt{5}}\)

\(=\dfrac{2\sqrt{2}\left(2\sqrt{3}-\sqrt{5}\right)}{2\sqrt{2}}-\dfrac{4\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+3\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=2\sqrt{3}-\sqrt{5}-2\left(\sqrt{5}+\sqrt{3}\right)+3\left(\sqrt{5}-1\right)\)

\(=2\sqrt{3}-\sqrt{5}-2\sqrt{5}-2\sqrt{3}+3\sqrt{5}-3\)

=-3

b: \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\left|\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}\right|\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left|\sqrt{y}-1\right|}{\left(x-1\right)^2}=\pm\dfrac{1}{x-1}\)

29 tháng 10 2023

a, \(\dfrac{4\sqrt{6}-2\sqrt{10}}{2\sqrt{2}}+\dfrac{4}{\sqrt{3}-\sqrt{5}}+3\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{2\sqrt{2}\left(2\sqrt{3}-\sqrt{5}\right)}{2\sqrt{2}}+\dfrac{4\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}+3\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=2\sqrt{3}-\sqrt{5}+\dfrac{4\sqrt{3}+4\sqrt{5}}{3-5}+3\left|\sqrt{5}-1\right|\)
\(=2\sqrt{3}-\sqrt{5}-2\sqrt{3}-2\sqrt{5}+3\sqrt{5}-3\)
\(=-3\)
b, \(với\left(x\ne1;y\ne1;y\ge0\right)\)
\(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}=\dfrac{x-1}{\sqrt{y}-1}\dfrac{\sqrt{\left(\sqrt{y}-1\right)^2}}{\left(x-1\right)^2}=\dfrac{\left|\sqrt{y}-1\right|}{\left(\sqrt{y}-1\right)\left(x-1\right)}\left(1\right)\)
\(TH1:y>1\)
\(\left(1\right)=\dfrac{\sqrt{y}-1}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)
\(TH2:0\le y< 1\)
\(\left(1\right)=\dfrac{1-\sqrt{y}}{\left(\sqrt{y}-1\right)\left(x-1\right)}=\dfrac{-1}{x-1}\)

 

14 tháng 10 2021

a: Xét (O) có 

ΔAMB nội tiếp đường tròn

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét tứ giác AMCK có 

\(\widehat{AKC}+\widehat{AMC}=180^0\)

nên AMCK là tứ giác nội tiếp

hay A,M,C,K cùng thuộc một đường tròn

7 tháng 7 2021

1,\(\sqrt{\left(x-1\right)^2}=\left|x-1\right|=-\left(x-1\right)=1-x\)

2,\(\sqrt{\left(a-2b\right)^2}=\left|a-2b\right|=-\left(a-2b\right)=2b-a\)

3,\(\sqrt{\left(2x-1\right)^2}=\left|2x-1\right|=2x-1\)

a: BC=5cm

\(\widehat{B}=37^0\)

\(\widehat{C}=53^0\)

9 tháng 11 2021

bạn giải chi tiết ra luôn đc ko ạ

 

14 tháng 10 2021

bạn tự vẽ hình giúp mik nha

a.ta có \(\Delta\)ABC nội tiếp (O) và AB là đường kính nên \(\Delta\)ABC vuông tại C

trong \(\Delta ABC\) vuông tại C có

AC=AB.cosBAC=10.cos30=8,7

BC=AB.sinCAB=10.sin30=5

ta có Bx là tiếp tuyến của (O) nên Bx vuông góc với AB tại B

trong \(\Delta\)ABE vuông tại B có

\(cosBAE=\dfrac{AB}{AE}\Rightarrow AE=\dfrac{AB}{cosBAE}=\dfrac{10}{cos30}=11,5\)

mà:CE=AE-AC=11,5-8,7=2,8

b.áp dụng pytago vào \(\Delta ABE\) vuông tại B có

\(BE=\sqrt{AE^2-AB^2}=\sqrt{11,5^2-10^2}=5,7\)

15 tháng 10 2021

 mình cảm ơn bạn :>

 

25 tháng 5 2021

`1)((sqrt{14}-sqrt7)/(1-sqrt2)+(sqrt{15}-sqrt5)/(1-sqrt3)):1/(sqrt7-sqrt5)`

`=((sqrt7(sqrt2-1))/(1-sqrt2)+(sqrt5(sqrt3-1))/(1-sqrt3):1/(sqrt7-sqrt5)`

`=(-sqrt7-sqrt5):1/(sqrt7-sqrt5)`

`=-(sqrt7+sqrt5).(sqrt7-sqrt5)`

`=-(7-5)`

`=-2`

`2)B=(2sqrtx-9)/(x-5sqrtx+6)-(sqrtx+3)/(sqrtx-2)-(2sqrtx+1)/(3-sqrtx)`

`=(2sqrtx-9-x+9+2x-3sqrtx-2)/(x-5sqrtx+6)`

`=(x-sqrtx-2)/(x-5sqrtx+6)`

`=((sqrtx-2)(sqrtx+1))/((sqrtx-2)(sqrtx-3))`

`=(sqrtx+1)/(sqrtx-3)`

`x=11+6sqrt2`

`=(3+sqrt2)^2`

`=>B=(4+2sqrt2)/(sqrt2)`

`=2+2sqrt2`

25 tháng 5 2021

`3)5x^4+4x^2-1=0`

Đặt `t=x^2(t>=0)`

`pt<=>5t^2+4t-1=0`

`a-b+c=0`

`=>t_1=-1(l),t_2=1/5(tm)`

`<=>x=+-sqrt{1/5}`

Vậy `S={-sqrt{1/5},+sqrt{1/5}}`