K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2020

\(\Rightarrow\overline{abc}⋮37\Rightarrow10.\overline{abc}=1000a+100b+10c=999a+100b+10c+a⋮37\) mà \(999a⋮37\Rightarrow100b+10c+a=\overline{bca}⋮37\)

\(\overline{bca}⋮37\Rightarrow10.\overline{bca}=1000b+100c+10a=999b+100c+10a+b⋮37\) mà

\(999b⋮37\Rightarrow100c+10a+b=\overline{cab}⋮37\left(dpcm\right)\)

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

12 tháng 6 2016

gọi 2 số nguyên tố sinh đôi là n và n+2.vây sô tn nằm giữa 2 số đó la n+1

n là số nguyên tố lớn hơn 3 nên n lẻ.=> n chẵn=>n+1 chia hết cho 2

mặt khác n n+1 n+2 là 3 số tự nguyên liên tiếp .do n và n+2 không chia hết cho 3 nên n+1 phải chia hết cho 3

n+1 chia hết cho cả 2 và 3 nên n+1 chia hêt cho 6.vậy.....

6 tháng 4 2017

CHỊU THÔI

KHÓ QUÁ

6 tháng 2 2019

24 tháng 1 2022

mình ko biết

 

24 tháng 1 2022

- Ta c/m rằng các số nguyên tố lớn hơn 3 luôn có dạng 6k+1, 6k+5, 6k-1.

- Số nguyên tố chia cho 6 sẽ có 1 trong các số dư là 0,1,2,3,4,5.

+ Vì số nguyên tố lẻ nên không chia hết cho 2=>không thể có dạng 6k, 6k+2, 6k+4. Mà số nguyên tố lớn 3 nên cũng không chia hết cho 3

=>Số nguyên tố cũng không thể có dạng 6k+3.

- Vậy số nguyên tố có dạng 6k+1, 6k+5.

- Ta thấy: 6k+5-6=6k-1

mà 6k+5-6=6(k-1)+5 luôn là số nguyên tố nên 6k-1 cũng là số nguyên tố.

=> Số nguyên tố sinh đôi luôn có 2 dạng là 6k+1 và 6k-1.

=> Số chính giữa 2 số nguyên tố sinh đôi có dạng 6k luôn chia hết cho 6.

9 tháng 3 2017

NHANH NÀO