Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
=>x^3-1-2x^3-4x^6+4x^6+4x=6
=>-x^3+4x-7=0
=>x=-2,59
4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50
=>-62x+12=-50
=>x=1
tìm x biết :
a,(2x-3)^2 =(x+ 5)^2
b,x^2(x-1) -4x^2 +8x -4 =0
c, (x-4)^2 -36 =0
giúp mik nha mik đang gấp
a, (2x-3)^2=(x+5)^2
2x-3=x+5
2x-3-x-5=0
x-8=0
x=8
b, x^2(x-1)-4x^2+8x-4=0
x^2(x-1)-(4x^2-8x+4)=0
x^2(x-1)-4(x^2-2x+1)=0
x^2(x-1)-4(x-1)^2=0
(x-1)(x^2-4)(x-1)=0
(x-1)(x-2)(x+2)(x-1)=0
=>x-1=0=>x=1
=>x-2=0=>x=2
=>x+2=0=>x=-2
=>x-1=0=>x=1
Vậy : x=1 ;x=2 và x=-2
c, (x-4)^2-36=0
(x-4)^2-6^2=0
(x-4-6)(x-4+6)=0
(x-10)(x+2)=0
=>x-10=0=>x=10
=>x+2=0=>x=-2
Vậy : x=10 và x=-2
k đúng cho mình nhé bạn !
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(A=\dfrac{1}{x+2}-\dfrac{x^3-4x}{x^2+4}\cdot\left(\dfrac{1}{x^2+4x+4}+\dfrac{1}{4-x^2}\right)\)
\(=\dfrac{1}{x+2}-\dfrac{x\left(x+2\right)\left(x-2\right)}{x^2+4}\cdot\dfrac{x-2-x-2}{\left(x+2\right)^2\left(x-2\right)}\)
\(=\dfrac{1}{x+2}-\dfrac{-4x}{\left(x+2\right)\left(x^2+4\right)}\)
\(=\dfrac{x^2+4+4x}{\left(x+2\right)\left(x^2+4\right)}\)
\(=\dfrac{x+2}{x^2+4}\)
b) Để A>0 thì x+2>0
hay x>-2 và \(x\ne2\)
Để A<0 thì x+2<0
hay x<-2
Để A=0 thì x+2=0
hay x=-2(loại)
x2-4x=0
<=> x(x-4)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)
Vậy x=0; x=4
Câu này rất dễ theo đề bài x2 là x nhân x có nghĩa x nhân chính nó vậy ta có luôn x bằng 4 vì 4 nhân 4 trừ đi 42 bằng 0
Bài 1 :
1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )
3) 4x2 + y2 + 4xy = ( 2x + y )2
Bài 2:
1) 2x2 + 8x = 0
=> 2x ( x + 4 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
2) 3 ( x - 4 ) + x2 - 4x = 0
=> 3 ( x - 4 ) + x ( x - 4 ) = 0
=> ( x - 4 ) ( 3 + x ) = 0
=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
3) 3 ( x - 2 ) = x2 - 2x
=> 3 ( x - 2 ) - x2 + 2x = 0
=> 3 ( x - 2 ) - x ( x - 2 ) = 0
=> ( x - 2 ) ( 3 - x ) = 0
=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
4) x ( x - 2 ) - 6 ( 2 - x ) = 0
=> x ( x - 2 ) + 6 ( x - 2 ) = 0
=> ( x - 2 ) ( x + 6 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)
5) 2x ( x + 5 ) = x2 + 5x
=> 2x ( x + 5 ) - x2 - 5x = 0
=> 2x ( x + 5 ) - x ( x + 5 ) = 0
=> ( x + 5 ) ( 2x - x ) = 0
=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)
6 ) ( x - 2 )2 - x ( x + 3 ) = 9
=> x2 - 4x + 4 - x2 - 3x = 9
=> - 7x + 4 = 9
=> - 7x = 5
=> x = \(-\frac{5}{7}\)
\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)
\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)
\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)
\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
\(2,3\left(x-4\right)+x^2-4x=0\)
\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)
\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
\(3,3\left(x-2\right)=x^2-2x\)
\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)
\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)
\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
\(4,x\left(x-2\right)-6\left(2-x\right)=0\)
\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)
\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)
\(a,x\left(-3x+5\right)+3x\left(x+1\right)-40=0\)
\(\left(x.-3x\right)+\left(5x\right)+3x\left(x+1\right)-40=0\)
\(-3x^2+5x+\left(3x.x\right)+\left(3x.1\right)-40=0\)
\(-3x^2+5x+3x^2+3x-40=0\)
\(\left(-3x^2+3x^2\right)+5x+3x-40=0\)
\(8x-40=0\)
\(8x=0+40=40\)
\(x=40:8=5\)
a) \(x\left(5-3x\right)+3x\left(x+1\right)-40=0\)
\(\Rightarrow5x-3x^2+3x^2+3x-40=0\)
\(\Rightarrow8x-40=0\)
\(\Rightarrow8x=40\)
\(\Rightarrow x=5\)
b) \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Rightarrow48x^2-12x-20x+5+3x-48x^2-7+112x=81\)
\(\Rightarrow83x=83\)
\(\Rightarrow x=1\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+2=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=-1\left(vô.lí\right)\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\dfrac{-1}{2}\right\}\)