Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(30-5x⋮x\)
\(\Leftrightarrow30-5x+5x⋮x\left(\text{vì: 5x chia hết cho x}\right)\)
\(\Rightarrow30⋮x\Rightarrow x\in\left\{-1;1;-2;2;-3;3;-5;5;-6;6;-10;10;-15;15;-30;30\right\}\)
Ngô Hải Nam ơi bn trả lời giúp mik ik
bài đó là bài 4^* tìm các số nguyên x để mỗi phân số sau đây là số nguyên
B = 22021 - 22020 - 22019 -...- 2 -1
B = 22021 - (22020 + 22019 +...+2 +1)
Đặt C = 22020 + 22019 +...+ 2 + 1
2C = 22021 + 22020 + 22019+....+ 2 + 1
2C - C = 22021 - 1
C = 22021 - 1
B = 22021 - (22021 -1)
B = 22021 - 22021 + 1
B = 1
1)a) 7^6 +7^5-7^4 = 7^4.7^2+7^4.7-7^4.1 = 7^4.(7^2+7-1) = 7^4.(49+7-1) = 7^4.55
Vì 55 chia hết cho 55 nên 7^4.55 chia hết cho 55
Do đó 7^6 + 7^5 - 7^4 chia hết cho 55 (đpcm)
\(\frac{y}{3}-\frac{1}{x}=\frac{1}{3}\)
\(\Leftrightarrow\frac{xy}{3x}-\frac{3}{3x}=\frac{x}{3x}\)
\(\Leftrightarrow xy-3=x\)
\(\Leftrightarrow xy-x=3\)
\(\Leftrightarrow x\left(y-1\right)=3=\left(-1\right).\left(-3\right)=3.1\)( vì x, y là các số nguyên )
\(TH1:\)
\(\orbr{\begin{cases}x=1\\y-1=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=4\end{cases}}\)
\(\orbr{\begin{cases}x=3\\y-1=1\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\y=2\end{cases}}}\)
\(TH2:\)
\(\orbr{\begin{cases}x=-1\\y-1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\y=-2\end{cases}}\)
\(\orbr{\begin{cases}x=-3\\y-1=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\y=0\end{cases}}\)
Vậy .......
Giải: Có y/3-1/x=1/3
y/3-1/3=1/x
Suy ra y-1/3=1/x
Suy ra (y-1).x=3
Suy ra y-1 và x thuộc Ư(3)
Vì x,y thuộc Z
Do đó ta có bảng giá trị:
y-1 | 1 | 3 | -1 | -3 |
x | 3 | 1 | -3 | -1 |
y | 2 | 4 | 0 | -2 |
Vậy (x,y)= {...........}
nha
5 số tự nhiên liên tiếp là : a+1,a+2,a+3,a+4,a+5 suy ra a+5 chia het cho 5
Vậy trong 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
Ta có 5 số tn liên tiếp là n; n + 1; n + 2; n + 3; n + 4 nếu n chia hết cho 5 => đpcm
Nếu n chia cho 5 dư 1 => n + 4 chia hết cho 5 => đpcm
Nếu n chia cho 5 dư 2 => n + 3 chia hết cho 5 => đpcm
Nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => đpcm
Nếu n chia cho 5 dư 4 => n + 1 chia hết cho 5 => đpcm
( đpcm: điều phải chứng minh )
Ta có : 2x - 37 = (2x + 1) - 38
Do 2x + 1 \(⋮\)2x + 1
Để (2x + 1) - 38 \(⋮\)2x + 1 thì 38 \(⋮\)2x + 1 => 2x + 1 \(\in\)Ư(38) = \(\left\{\pm1;\pm2;\pm19;\pm38\right\}\)
Lập bảng :
Vậy x = {0; -1; 9; -10} thì (2x - 37) \(⋮\)2x + 1