Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
a) \(\left(-3,5\right):\left(-2\dfrac{3}{5}\right)=\dfrac{7}{2}:\dfrac{13}{2}=\dfrac{7}{2}\cdot\dfrac{2}{13}=\dfrac{7\cdot2}{2\cdot13}=\dfrac{7}{13}\)
b) \(\left(-\dfrac{11}{15}\right):1\dfrac{1}{10}=\left(-\dfrac{11}{15}\right):\dfrac{11}{10}=\left(-\dfrac{11}{15}\right)\cdot\dfrac{10}{11}=\dfrac{-11\cdot10}{15\cdot11}=-\dfrac{10}{15}=-\dfrac{2}{3}\)
c) \(2\dfrac{2}{3}:\left(-3\dfrac{3}{4}\right)=\dfrac{8}{3}:-\dfrac{15}{4}=\dfrac{8}{3}\cdot-\dfrac{4}{15}=\dfrac{8\cdot4}{3\cdot15}=-\dfrac{32}{45}\)
Bài 7:
a) \(\left(-\dfrac{3}{25}\right):6=\left(-\dfrac{3}{25}\right)\cdot\dfrac{1}{6}=\dfrac{-3\cdot1}{25\cdot6}=-\dfrac{1}{50}\)
b) \(-\dfrac{5}{23}:-2=\dfrac{5}{23}\cdot\dfrac{1}{2}=\dfrac{5\cdot1}{23\cdot2}=\dfrac{5}{26}\)
c) \(\dfrac{-7}{11}:-3,5=\dfrac{7}{11}:\dfrac{7}{2}=\dfrac{7}{11}\cdot\dfrac{2}{7}=\dfrac{7\cdot2}{11\cdot7}=\dfrac{2}{11}\)
a) \(2^4+8\left[\left(-2\right)^2:\dfrac{1}{2}\right]^0-2^{-2}.4+\left(-2\right)^2\)
\(=2^4+8.1-\dfrac{1}{4}.4+4\)
\(=16+8-1+4\)
\(=24-1+4\)
\(=23+4\)
\(=27\)
Câu 4:
Số đo các góc còn lại là \(47^0;133^0;133^0\)
thay x = -0,3 vào f(x) ta có
f(-0,3) = (-0,3)3+0,027.(-0,3)2-2019
f(-0,3) = -0,9+0,027.0,6-2019
f(-0,3) = -0,9+0,0162-2019
f(-0,3) = 0,9162-2019
f(-0,3) = -2018,0838
`Answer:`
\(f\left(x\right)=x^3+0,027x^2-2019\)
\(\Rightarrow f\left(-0,3\right)=\left(-0,3\right)^3+0,027.\left(-0,3\right)^2-2019\)
\(\Rightarrow f\left(-0,3\right)=-0,027+0,027.0,09-2019\)
\(\Rightarrow f\left(-0,3\right)=-0,027+0,00243-2019\)
\(\Rightarrow f\left(-0,3\right)=-0,02457-2019\)
\(\Rightarrow f\left(-0,3\right)=-2019,02457\)
Lời giải:
Nếu $x+y+z+t=0$ thì $M=\frac{-t}{t}=\frac{-x}{x}=\frac{-z}{z}=-1$
$\Rightarrow (M-1)^{2025}=(-1-1)^{2025}=(-2)^{2025}$
Nếu $x+y+z+t\neq 0$. Áp dụng TCDTSBN:
$M=\frac{x+y+z}{t}=\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z+y+z+t+z+t+x+t+x+y}{t+x+y+z}=\frac{3(x+y+z+t)}{x+y+z+t}=3$
$\Rightarrow (M-1)^{2025}=2^{2025}$