K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2023

`a,` ĐKXĐ: `x>=0;x\ne1`

`A=...=(sqrtx(1+sqrtx)+sqrtx(1-sqrtx)+sqrtx-3)/((1-sqrtx)(1+sqrtx))`

`=(sqrtx+x+sqrtx-x+sqrtx-3)/((1-sqrtx)(1+sqrtx))`

`=(3sqrtx-3)/((1-sqrtx)(1+sqrtx))`

`=-3/(1+sqrtx)`

`b,A=-3/(1+sqrtx)` 

Vì `x>=0` nên `1+sqrtx>=1` nên `3/(1+sqrtx)<=3` suy ra `A>=-3`

Dấu "=" xảy ra `<=>x=0`

Vậy `A_(min)=-3<=>x=0`

1 tháng 7 2023

Câu 1:

a: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3x+9}{9-x}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{3x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-3x-9+2\sqrt{x}\cdot\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-3\sqrt{x}-3x-9+2x+6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3}{\sqrt{x}+3}\)

b: Thay \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\) vào Q, ta được:

\(Q=\dfrac{3}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\dfrac{3}{\sqrt{3}-1-1}\)

\(=\dfrac{3}{\sqrt{3}-2}=-3\left(2+\sqrt{3}\right)\)

c: Đặt A=Q:P

\(=\dfrac{3}{\sqrt{x}-1}:\dfrac{3}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)

Để A nguyên thì \(\sqrt{x}+3⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1+4⋮\sqrt{x}-1\)

=>\(4⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(\sqrt{x}\in\left\{2;0;3;-1;5;-3\right\}\)

=>\(\sqrt{x}\in\left\{2;0;3;5\right\}\)

=>\(x\in\left\{0;4;9;25\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;4;25\right\}\)

1: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

2: Xét ΔFBH vuông tại F và ΔFAC vuông tại F có

\(\widehat{FBH}=\widehat{FAC}\left(=90^0-\widehat{ACF}\right)\)

Do đó: ΔFBH~ΔFAC

=>\(\dfrac{FB}{FA}=\dfrac{FH}{FC}\)

=>\(FB\cdot FC=FA\cdot FH\)

3: Xét tứ giác AEHD có

\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)

nên AEHD là tứ giác nội tiếp đường tròn đường kính AH

Tâm I là trung điểm của AH

 

NV
25 tháng 1

a.

Do MA là tiếp tuyến tại A \(\Rightarrow MA\perp OA\Rightarrow\widehat{MAO}=90^0\)

Xét hai tam giác OMA và OMB có:

\(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\\OM\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OMA=\Delta OMB\left(c.c.c\right)\)

\(\Rightarrow\widehat{MBO}=\widehat{MAO}=90^0\)

\(\Rightarrow MB\perp OB\Rightarrow MB\) là tiếp tuyến

b.

Gọi H là giao điểm AB và OM

Ta có: \(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow OM\) là trung trực AB

\(\Rightarrow OM\perp AB\) tại H  đồng thời \(HA=HB=\dfrac{AB}{2}\)

Trong tam giác vuông OMA: \(cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{2}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOM}=60^0\)

\(\Rightarrow\widehat{AMO}=90^0-\widehat{AOM}=30^0\)

\(\Rightarrow\widehat{AMB}=2\widehat{AMO}=60^0\)

\(\Rightarrow\Delta AMB\) đều (tam giác cân có 1 góc bằng 60 độ)

Trong tam giác vuông OAH:

\(AH=OA.sin\widehat{AOM}=R.sin60^0=\dfrac{R\sqrt{3}}{3}\)

\(\Rightarrow AB=2AH=R\sqrt{3}\)

\(OH=OA.cos\widehat{AOM}=R.cos30^0=\dfrac{R}{2}\)

\(\Rightarrow HM=OM-OH=\dfrac{3R}{2}\)

\(\Rightarrow S_{ABM}=\dfrac{1}{2}HM.AB=\dfrac{3R^2\sqrt{3}}{4}\)

c.

BE là đường kính \(\Rightarrow\widehat{BAE}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{BAE}=90^0\Rightarrow AB\perp AE\)

Mà \(AB\perp OM\) (theo cm câu b)

\(\Rightarrow AE||OM\) (cùng vuông góc AB)

NV
25 tháng 1

loading...

b) Ta có: \(9x^4+8x^2-1=0\)

\(\Leftrightarrow9x^4+9x^2-x^2-1=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(9x^2-1\right)=0\)

mà \(x^2+1>0\forall x\)

nên \(9x^2-1=0\)

\(\Leftrightarrow9x^2=1\)

\(\Leftrightarrow x^2=\dfrac{1}{9}\)

hay \(x\in\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

22 tháng 12 2021

a: Để hàm số này làm hàm số bậc nhất thì 2m-3<>0

hay m<>3/2