K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Mình ko giải đc ko

7 tháng 1 2018

MỤC ĐÍCH CỦA MÀY LÀ QUẢNG CÁO NHẠC THÌ YÊU CẦU CÚT OK?

CÒN NẾU MÀY MÀY MUỐN HỎI THẬT SỰ THÌ XIN MÀY CHỈ GÕ ĐỀ TOÁN VÀ ĐỪNG CHO THÊM MẤY THỨ TẠP CHẤT KIA VÀO.

CHỨ KHÔNG PHẢI LÀ HỎI MỘT CÁCH CHỐNG CHẾ KIA NHÉ 

22 tháng 2 2016

Ta có: \(xyz\le\left(\frac{x+y+z}{3}\right)^3=\frac{1}{27}\)  và  \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(\frac{x+y+y+z+z+x}{3}\right)^3=\frac{8}{27}\)

\(\Rightarrow B\le\frac{1}{27}.\frac{8}{27}=\frac{8}{729}\Rightarrow k=\frac{8}{729}\Rightarrow9^3.k=8\) 

2 tháng 5 2021

Uh mình chỉ giúp được câu a

\(x^2-5x+3=0\)

\(\Delta=b^2-4ac\)

\(=\left(-5\right)^2-4.1.3\)

\(=25-12=13>0\)

\(x1=\dfrac{b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{13}}{2}\)

\(x2=\dfrac{b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{13}}{2}\)

23 tháng 12 2021

Áp dụng BĐT cauchy, ta có:

\(\sqrt{\left(2y+2z-x\right)\cdot3x}\le\dfrac{2z+2y-x+3x}{2}=\dfrac{2\left(x+y+z\right)}{2}=x+y+z\\ \Leftrightarrow\sqrt{2y+2z-x}\le\dfrac{x+y+z}{\sqrt{3x}}\\ \Leftrightarrow\sqrt{\dfrac{x}{2y+2z-x}}\ge\dfrac{\sqrt{x}}{\dfrac{x+y+z}{\sqrt{3x}}}=\dfrac{x\sqrt{3}}{x+y+z}\)

\(\Leftrightarrow S=\sum\sqrt{\dfrac{x}{2y+2z-x}}\ge\sqrt{3}\left(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}\right)\\ \Leftrightarrow S\ge\sqrt{3}\cdot\dfrac{x+y+z}{x+y+z}=\sqrt{3}\)

Dấu \("="\Leftrightarrow x=y=z\) hay tam giác đều

4:

a: góc CEH+góc CDH=180 độ

=>CDHE nội tiếp

b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có

góc EHA=góc DHB

=>ΔHEA đồng dạng với ΔHDB

=>HE/HD=HA/HB

=>HE*HB=HD*HA

12 tháng 12 2021

\(b,\Leftrightarrow\left\{{}\begin{matrix}m+2=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=-1\\ c,\text{PT giao Ox: }y=0\Leftrightarrow\left(m+2\right)x-m=0\\ \text{Thay }x=2\Leftrightarrow2m+4-m=0\\ \Leftrightarrow m=-4\\ d,\text{PT giao Ox và Oy: }\\ y=0\Leftrightarrow x=\dfrac{m}{m+2}\Leftrightarrow A\left(\dfrac{m}{m+2};0\right)\Leftrightarrow OA=\left|\dfrac{m}{m+2}\right|\\ x=0\Leftrightarrow y=-m\Leftrightarrow B\left(0;-m\right)\Leftrightarrow OB=\left|m\right|\\ \Delta OAB\text{ cân }\Leftrightarrow OA=OB\Leftrightarrow\left|\dfrac{m}{m+2}\right|=\left|m\right|\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{m}{m+2}=m\\\dfrac{m}{m+2}=-m\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\left(m+1\right)=0\\m\left(m+3\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-1\\m=-3\end{matrix}\right.\)

NV
19 tháng 6 2020

Theo Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 1, giả sử đó là a và b

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)

\(\Rightarrow2ab+2\ge ab+a+b+1=\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow2\left(ab+1\right)\left(c+1\right)\ge\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Rightarrow\frac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{1}{\left(ab+1\right)\left(c+1\right)}=\frac{1}{\left(\frac{1}{c}+1\right)\left(c+1\right)}=\frac{c}{\left(c+1\right)^2}\)

Mặt khác ta lại có:

\(\left(a+1\right)^2=\left(\sqrt{ab}.\sqrt{\frac{a}{b}}+1.1\right)^2\le\left(ab+1\right)\left(\frac{a}{b}+1\right)=\frac{\left(ab+1\right)\left(a+b\right)}{b}\)

\(\Rightarrow\frac{1}{\left(a+1\right)^2}\ge\frac{b}{\left(ab+1\right)\left(a+b\right)}\)

Tương tự: \(\frac{1}{\left(b+1\right)^2}\ge\frac{a}{\left(ab+1\right)\left(a+b\right)}\Rightarrow\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{ab+1}=\frac{1}{\frac{1}{c}+1}=\frac{c}{c+1}\)

Do đó:

\(VT=\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}+\frac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(VT\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=\frac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)