K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

TL:

a)  Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2

 nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2

Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2

Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2 

^HT^

24 tháng 10 2021

TL:

 

- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2

- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2

-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2

vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2

 ^HT^

Giải:

a) \(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) và \(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

Ta có:

\(A=\dfrac{10^{1990}+1}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}\) 

\(10A=\dfrac{10^{1991}+1+9}{10^{1991}+1}\) 

\(10A=1+\dfrac{9}{10^{1991}+1}\) 

Tương tự : 

\(B=\dfrac{10^{1991}+1}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}\) 

\(10B=\dfrac{10^{1992}+1+9}{10^{1992}+1}\) 

\(10B=1+\dfrac{9}{10^{1992}+1}\) 

Vì \(\dfrac{9}{10^{1991}+1}>\dfrac{9}{10^{1992}+1}\) nên \(10A>10B\) 

\(\Rightarrow A>B\left(đpcm\right)\) 

Chúc bạn học tốt!

7 tháng 7 2021

Thankss

6 tháng 1 2019

a > 2

=> a = 2 + k

b > 2

=> b = 2 + q

Ta có :

+) a + b = 2 + k + 2 + q = 4 + k + q + 0

+) a.b = ( 2 + k ) ( 2 + q ) = 4 + 2k + 2q + k.q 

Dễ thấy 4 = 4; 2k > k; 2q > q; k.q > 0

Do đó : a.b > a+b ( đpcm )

6 tháng 1 2019

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)
    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

12 tháng 2 2018

Mấy bài này bỏ ngoặc rồi rút gọn là ra thôi

28 tháng 10 2020

a,

+ nếu n \(⋮\) 2 \(\Rightarrow n\left(n+5\right)⋮2\)

+ nếu 2 chia 2 dư 1

=> n có dạng 2k+1

=> n(n+5) = (2k+1)(2k+6) = 2(2k+1)(k+3) \(⋮2\)

=> \(n\left(n+5\right)⋮2\forall n\)

vậy.....

b, \(A=4+4^2+4^3+...+4^{2019}\)

\(4A=4^2+4^3+4^4+...+4^{2020}\)

\(3A=4^{2020}-4\)

\(A=\frac{4^{2020}-4}{3}\)

vậy.......

28 tháng 10 2020

bạn làm có đúng ko đó