Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: \(E=\dfrac{x^2-9-x^2+4-x^2+9}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x+2}{x+3}\)
a: \(A=\dfrac{4x^2+x^2-2x+1+x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{6x^2+2}{\left(x-1\right)\left(x+1\right)}\)
a) \(=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)
b) \(=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
c) \(=3\left(x^2+4x+4\right)=3\left(x+2\right)^2\)
d) \(=2\left(a^2-b^2\right)-5\left(a-b\right)=2\left(a-b\right)\left(a+b\right)-5\left(a-b\right)\)
\(=\left(a-b\right)\left(2a+2b+5\right)\)
e) \(=xy\left(x-y\right)-3\left(x^2-y^2\right)=xy\left(x-y\right)-3\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(xy-3x-3y\right)\)
f) \(=x^2\left(x+5\right)-4\left(x+5\right)=\left(x+5\right)\left(x^2-4\right)\)
\(=\left(x+5\right)\left(x-2\right)\left(x+2\right)\)
\(3x\left(x-y\right)+x-y\)
\(=3x\left(x-y\right)+1\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+1\right)\)
a,\(x^2-7x+6=x^2-x-6x+6\)
\(=x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-6\right)\left(x-1\right)\)
a) x2-7x+6=(x2-x)-(6x-6)=x(x-1)-6(x-1)=(x-6)(x-1)
b) x2-6x+3=(x2-6x+9)-6=(x-3)2-\(\sqrt{6^2}\)=(x-3-\(\sqrt{6}\))(x-3+\(\sqrt{6}\))
c) x2-4x+3=(x2-x)-(3x-3)=x(x-1)-3(x-1)=(x-3)(x-1)
d) 3x2-5x+2=(3x2-3x)-(2x-2)=3x(x-1)-2(x-1)=(3x-2)(x-1)
e) 7x2-x-6=(7x2-7x)+(6x-6)=7x(x-1)+6(x-1)=(7x+6)(x-1)
f) 3x2-5x-8=(3x2+3x)-(8x+8)=3x(x+1)-8(x+1)=(3x-8)(x+1)
g) x2-6x+5=(x2-x)-(5x-5)=x(x-1)-5(x-1)=(x-5)(x-1)
h) x2-2x-3=(x2-2x+1)-4=(x-1)2-22=(x-1-2)(x-1+2)=(x-3)(x+1)
i) x2-x-12=(x2+3x)-(4x+12)=x(x+3)-4(x+3)=(x-4)(x+3)
a: Xét ΔABC vuông tại B và ΔABE vuông tại B có
AB chung
BC=BE
=>ΔABC=ΔABE
=>góc EAB=góc CAB
=>AB là phân giác của góc EAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
c: ΔAMH=ΔANH
=>HM=HN
mà HN<HC
nên HM<HC
e: Xét ΔAEC có
AB,CM là đường cao
AB cắt CM tại H
=>H là trực tâm
=>EH vuông góc AC
mà HN vuông góc AC
nên E,H,N thẳng hàng
Bài 8
a, \(A=a^2+b^2=\left(a+b\right)^2-2ab\Rightarrow S^2-2P\)
b, \(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)
\(\Rightarrow S\left(S^2-3P\right)=S^3-3PS\)
c, \(C=a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=\left[\left(a+b\right)^2-2ab\right]^2-2\left(ab\right)^2\)
\(\Rightarrow\left(S^2-2P\right)^2-2P^2\)
3B.
a.
\(\dfrac{6}{7-x}+\dfrac{-4}{x}+\dfrac{6}{x-7}+\dfrac{2}{x-2}+\dfrac{4}{x}+\dfrac{-5}{x+2}\)
\(=\dfrac{6}{7-x}-\dfrac{6}{7-x}+\dfrac{-4+4}{x}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{-5\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=0+0+\dfrac{2x+4-5x+10}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-3x+14}{\left(x-2\right)\left(x+2\right)}\)
b.
\(\dfrac{x-1}{x^2-4}-\dfrac{1}{x+2}+\dfrac{x+2}{x}+\dfrac{1}{x+2}+\dfrac{x+2}{-x}-\dfrac{3}{x-2}\)
\(=\dfrac{x-1}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\left(\dfrac{1}{x+2}-\dfrac{1}{x+2}\right)+\left(\dfrac{x+2}{x}-\dfrac{x+2}{x}\right)\)
\(=\dfrac{x-1-3x-6}{\left(x-2\right)\left(x+2\right)}+0+0\)
\(=\dfrac{-2x-7}{\left(x-2\right)\left(x+2\right)}\)
4A.
\(\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{1-x^2}\)
\(=\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)^2}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}-\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}\)
\(=\dfrac{3x^2+4x+1-\left(x^2-2x+1\right)-\left(x^2+2x-3\right)}{\left(x+1\right)\left(x-1\right)^2}\)
\(=\dfrac{x^2+4x+3}{\left(x+1\right)\left(x-1\right)^2}=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)^2}\)
\(=\dfrac{x+3}{\left(x-1\right)^2}\)
b.
\(\dfrac{2x}{x^2-4}-\left(\dfrac{2}{x+5}+\dfrac{3-x}{x+1}\right)+\left(\dfrac{2}{x+5}-\left(\dfrac{4}{x^2-4}+\dfrac{x-3}{x+1}\right)\right)\)
\(=\dfrac{2x}{x^2-4}+\left(\dfrac{2}{x+5}-\dfrac{2}{x+5}\right)+\left(\dfrac{x-3}{x+1}-\dfrac{x-3}{x+1}\right)-\dfrac{4}{x^2-4}\)
\(=\dfrac{2x-4}{x^2-4}=\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2}{x+2}\)